首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recently proposed neo-classical theory for nematic elastomers generalizes standard molecular-statistical Gaussian network theory to allow for anisotropic distributions of polymer chains. The resulting free-energy density models several of the novel properties of nematic elastomers. In particular, it predicts the ability of nematic elastomers to undergo large deformations with exactly zero force and energy cost—so called soft elasticity. Although some nematic elastomers have been shown to undergo deformations with unusually small applied forces, not all do so, and none deform with zero force. Further, as a zero force corresponds to infinitely many possible deformations in the neo-classical theory, this non-uniqueness leads to serious indeterminacies in numerical schemes. Here we suggest that the neo-classical free-energy density is incomplete and propose an alternative derivation that resolves these difficulties. In our approach, we use the molecular-statistical theory to identify appropriate variables. This yields the choice for the microstructural degrees of freedom as well as two independent strain tensors (the overall macroscopic strain plus a relative strain that indicates how the deformation of the elastomeric microstructure deviates from the macroscopic deformation). We then propose expressions for the free-energy density as a function of the three quantities and show how the material parameters can be measured by two simple tests. The neo-classical free-energy density can be viewed as a special case of our expressions in which the free-energy density is independent of the overall macroscopic strain, thus supporting our view that the neo-classical theory is incomplete.  相似文献   

2.
We study two variational models recently proposed in the literature to describe the mechanical behaviour of nematic elastomers either in the fully nonlinear regime or in the framework of a geometrically linear theory. We show that, in the small strain limit, the energy functional of the first one Γ-converges to the relaxation of the second one, a functional for which an explicit representation formula is available.  相似文献   

3.
The remarkable ability of nematic elastomers to exhibit large deformations under small applied forces is known as soft elasticity. The recently proposed neo-classical free-energy density for nematic elastomers, derived by molecular-statistical arguments, has been used to model soft elasticity. In particular, the neo-classical free-energy density allows for a continuous spectrum of equilibria, which implies that deformations may occur in the complete absence of force and energy cost. Here we study the notion of force-free states in the context of a continuum theory of nematic elastomers that allows for isotropy, uniaxiality, and biaxiality of the polymer microstructure. Within that theory, the neo-classical free-energy density is an example of a free-energy density function that depends on the deformation gradient only through a nonlinear strain measure associated with the deformation of the polymer microstructure relative to the macroscopic continuum. Among the force-free states for a nematic elastomer described by the neo-classical free energy density, there is, in particular, a continuous spectrum of states parameterized by a pair of tensors that allows for soft deformations. In these force-free states the polymer microstructure is material in the sense that it stretches and rotates with the macroscopic continuum. Limitations of and possible improvements upon the neo-classical model are also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The relaxation of a free-energy functional which describes the order–strain interaction in nematic elastomers is obtained explicitly. We work in the regime of small strains (linearized kinematics). Adopting the uniaxial order tensor theory (Frank model) to describe the liquid crystal order, we prove that the minima of the relaxed functional exhibit an effective biaxial nematic texture, as in the de Gennes order tensor model. In particular, this implies that, at a sufficiently macroscopic scale, the response of the material is soft even if the order of the system is assumed to be fixed at the microscopic scale. The relaxed energy density satisfies a solenoidal quasiconvexification formula.  相似文献   

5.
We report on some new experimental observations of pattern formation during stretching experiments of nematic liquid crystal elastomers (LCEs).  相似文献   

6.
We present a rigorous derivation of dimensionally reduced theories for thin sheets of nematic elastomers, in the finite bending regime. Focusing on the case of twist nematic texture, we obtain 2D and 1D models for wide and narrow ribbons exhibiting spontaneous flexure and torsion. We also discuss some variants to the case of twist nematic texture, which lead to 2D models with different target curvature tensors. In particular, we analyse cases where the nematic texture leads to zero or positive Gaussian target curvature, and the case of bilayers.  相似文献   

7.
8.
Nematic liquid crystals combined with long molecular chains to form liquid crystal elastomers are capable of large extension. When such liquid crystal elastomers contain azo dyes to constitute photoelastomers, illumination can trigger large contraction. Beams made from such photoelastomers possess a non-uniform illumination and hence photostrain across their cross-section, resulting in bending and highly non-linear stress distribution. Due to the non-linear stress distribution, there can be more than one stress-free layers within the beam. In this paper, we present a dimensionless parametric study of nematic photoelastomer beams under the combined effects of light and mechanical loads. We show how the number of stress-free layers depends on three dimensionless parameters. The paths traced out by the system in the space of dimensionless parameters by varying the different real parameters are investigated, showing how the number of stress-free layers changes when e.g. the thickness or the mechanical load of the elastomer beam is varied. These results are important if the strain induced director rotation is not negligible.  相似文献   

9.
10.
Ogden-type extensions of the free-energy densities currently used to model the mechanical behavior of nematic elastomers are proposed and analyzed. Based on a multiplicative decomposition of the deformation gradient into an elastic and a spontaneous or remanent part, they provide a suitable framework to study the stiffening response at high imposed stretches. Geometrically linear versions of the models (Taylor expansions at order two) are provided and discussed. These small strain theories provide a clear illustration of the geometric structure of the underlying energy landscape (the energy grows quadratically with the distance from a non-convex set of spontaneous strains or energy wells). The comparison between small strain and finite deformation theories may also be useful in the opposite direction, inspiring finite deformation generalizations of small strain theories currently used in the mechanics of active and phase-transforming materials. The energy well structure makes the free-energy densities non-convex. Explicit quasi-convex envelopes are provided, and applied to compute the stiffening response of a specimen tested in plane strain extension experiments (pure shear).  相似文献   

11.
Liquid crystal elastomer is a kind of anisotropic polymeric material, with complicated micro-structures and thermo-order-mechanical coupling behaviors. In this paper, we propose a method to systematically model these coupling behaviors. We derive the constitutive model in full tensor structure according to the Clausius-Duhem inequality. Two of the constitutive equations represent the mechanical equilibrium and the other two represent the phase equilibrium. Choosing the total free energy as the combination of the neo-classical free energy and the Landau-de Gennes nematic free energy, we obtain the Cauchy stress-deformation gradient relation and the order-mechanical coupling equations. We find the analytical homogeneous solutions of the deformation for the typical mechanical loadings, such as uniaxial stretch, and simple shear in any directions. We also compare the compression behavior of prolate liquid crystal elastomers with the stretch behavior of oblate liquid crystal elastomers. As a result, the stress, strain, temperature, order parameter, biaxiality and the direction of the director of liquid crystal elastomers couple with each other. When the prolate liquid crystal elastomer sample is stretched in the direction parallel to its director, the deviatoric stress makes the mesogens more order and increase the transition temperature. When the sample is sheared or stretched in the direction non-parallel to the director, the director of the liquid crystal elastomer will rotate, and the biaxiality will be induced. Because of the order-mechanical coupling, under infinitesimal deformation, liquid crystal elastomer has anisotropic Young’s modulus and zero shear modulus in the direction parallel or perpendicular to the director. While for the oblate liquid crystal elastomers, the stretch parallel to the director will cause the rotation of the director and induce the biaxiality.  相似文献   

12.
Based on the neo-classical elastic energy of liquid crystal elastomers, the opto-mechanical behavior is modeled by considering the effect of photoisomerization on the nematic-isotropic transition of liquid crystal phase. Linearized stress–strain relation is derived for infinitesimal deformations with a very unusual shear stress that does not vanish identically as in the case of the soft behavior but is proportional to the rotation of directors. In other words, the shear stress depends on both the shear strain and the skew symmetric part of the displacement gradient with the shear modulus induced by the effect of photoisomerization. Finite element implementation for plane stress problems is obtained through a self-defined material subroutine in ABAQUS FEA tool. Numerical simulations show that the light induced deformations of two dimensional specimens consist of contractions, expansions and bending in different directions. The stress distributions indicate that the driving force for the light induced bending is produced by the bending moment of the normal stress along the director, while the other stress components are much smaller for two dimensional beam shaped specimens. However, the shear stress of the soft LCE is generally nonzero under light illumination due to the inhomogeneity of the opto-mechanical effect. It can be concluded from the strain distributions that the transversal plane cross section could remain plane after deformation if the light intensity or the decay distance is not too small and the sample is in the deep nematic phase. However, the shear strain and in plane rotation are of the same order as the other strain components, and thus should not be neglected. This indicates that the classical simple bending assumptions such as the Euler–Bernoulli beam theory should not be directly applied to model the light induced bending of neo-classical liquid crystal elastomers due to the soft behavior of the materials.  相似文献   

13.
Mechanochemically responsive (MCR) polymers have been synthesized by incorporating mechanophores – molecules whose chemical reactions are triggered by mechanical force – into conventional polymer networks. Deformation of the MCR polymers applies force on the mechanophores and triggers their reactions, which manifest as phenomena such as changing colors, varying fluorescence and releasing molecules. While the activation of most existing MCR polymers requires irreversible plastic deformation or fracture of the polymers, we covalently coupled mechanophores into the backbone chains of elastomer networks, achieving MCR elastomers that can be repeatedly activated over multiple cycles of large and reversible deformations. This paper reports a microphysical model of MCR elastomers, which quantitatively captures the interplay between the macroscopic deformation of the MCR elastomers and the reversible activation of mechanophores on polymer chains with non-uniform lengths. Our model consistently predicts both the stress–strain behaviors and the color or fluorescence variation of the MCR elastomers under large deformations. We quantitatively explain that MCR elastomers with time-independent stress–strain behaviors can give time-dependent variation of color or fluorescence due to the kinetics of mechanophore activation and that MCR elastomers with different chain-length distributions can exhibit similar stress–strain behaviors but very different colors or fluorescence. Implementing the model into ABAQUS subroutine further demonstrates our model's capability in guiding the design of MCR elastomeric devices for applications such as large-strain imaging and color and fluorescence displays.  相似文献   

14.
15.
We have investigated the electrorheological properties of dispersions of semi-conducting particles in oils and elastomers. We focused on how the dynamic mechanical properties measured under oscillatory shearing change with the viscosity of the oil or the elasticity of the elastomer. The dependence on electric field and strain amplitude were also investigated. We found that the largest increment of the mechanical properties under electric fields was obtained when using oils of low viscosity and elastomers of low elasticity. The strain amplitude which produced the largest variation with electric field was found to be 0.1% for the elastomer systems, but significantly larger (1%) for the oil systems. These results are interpreted in terms of a model based on the competition between the dipole–dipole electrostatic interaction (which acts to maintain neighbouring particles together) and the shearing force due to the deformation of the matrix (which acts to separate the particles). We find that there are parallels between the electrorheological behaviour of particles dispersed in elastomers and the behaviour of particles dispersed in oils. These results should find application in the selection of suitable matrix materials for electrorheological suspensions.  相似文献   

16.
We obtain an explicit formula for the relaxation of the free-energy density for nematic elastomers proposed by Bladon, Terentjev&;Warner (Phys. Rev. E 47 (1993), 3838–3840). The proof is based on a characterization of the level sets of the relaxed energy. In particular, the construction uses only laminates within laminates and it identifies those deformations that correspond to simple laminates.  相似文献   

17.
The thermo-order-mechanical behaviors of liquid crystal elastomers(LCEs) under biaxial loading are studied in this paper.Inverse method for nonlinear elastic problems is utilized by imposing biaxial stretching to thin rectangular samples.Neo-classical elastic energy is used together with the Landau-de Gennes nematic free energy.Under plane stress assumptions,the constitutive equations are derived.Due to the possible reorientations of the liquid crystal molecules induced by the imposed biaxial loading,the in-plane nonlinear stress-strain relations can have different expressions depending on which loading axis will have the largest effective principal strain.And the free energy is a multi-well non-convex potential function.As shown by some typical loading paths,the LCE samples will exhibit an anisotropic nonlinear elastic behavior,as long as the loading has not induced a reorientation of the liquid crystal molecules.When this did occur,jumps of stresses could take place for dead loadings due to the losing of stability.  相似文献   

18.
We consider a nematic elastomer which has been cross-linked in an isotropic state. As an application, we consider the time-independent, isochoric, homogeneous deformation of a right circular cylinder wherein each circular cross section of the specimen is deformed into an ellipse. We explore the possibility of the existence of disclinations when the molecular conformation is uniaxial. Numerical solution of the governing boundary-value problem indicates the presence of an isotropic core (the disclination core) of material surrounding the cylinder axis in which the polymeric chains are shaped as spherical coils. The isotropic core is bounded by a narrow transition layer across which the molecular conformation changes from spherical to uniaxial. The material thereby becomes anisotropic away from the disclination. The anisotropic regions show a markedly different distribution for the free energy. This distribution of energy determines the radius of the core to be on the order of 10−2 μm. This work is a first step toward gaining an understanding of the existence of defective states in homogenous deformed nematic elastomers.  相似文献   

19.
In this paper, an exponential framework for strain energy density functions of elastomers and soft biological tissues is proposed. Based on this framework and using a self-contained approach that is different from a guesswork or combination viewpoint, a set strain energy density functions in terms of the first and second strain invariants is rebuilt. Among the constructed options for strain energy density, a new exponential and mathematically justified model is examined. This model benefits from the existence of second strain invariant, simplicity, stability of parameters, and the state of being accurate. This model can capture strain softening, strain hardening and is able to differentiate between various deformation-state dependent responses of elastomers and soft tissues undergoing finite deformation. The model has two material parameters and the mathematical formulation is simple to render the possibility of numerical implementations. In order to investigate the appropriateness of the proposed model in comparison to other hyperelastic models, several experimental data for incompressible isotropic materials (elastomers) such as VHB 4905 (polyacrylate rubber), two various silicone rubbers, synthetic rubber neoprene, two different natural rubbers, b186 rubber (a carbon black-filled rubber), Yeoh vulcanizate rubber, and finally porcine liver tissue (a very soft biological tissue) are examined. The results demonstrate that the proposed model provides an acceptable prediction of the behavior of elastomers and soft tissues under large deformation for different applied loading states.  相似文献   

20.
We study the ability of two scaling exponents to describe the mechanical properties of swollen elastomers. Swelling effects on the Young's modulus and osmotic pressure of swollen elastomers at equilibrium swelling are investigated using literature data and the Flory–Rehner free energy function. An extended model is developed by introducing two scaling exponents into elastic strain energy functions that are separated into deviatoric and volumetric components. This extended model satisfactorily reproduces the two different swelling effects, and also predicts swelling-induced rupture. The predicted tendency readily explains experimental observations well, i.e., swelling-induced rupture occurs when small extensions are applied in good solvents, and elucidates the mechanism of swelling-induced rupture of elastomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号