首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental investigation of the elastic–plastic nature of shock wave propagation in foams was undertaken. The study involved experimental blast wave and shock tube loading of three foams, two polyurethane open-cell foams and a low-density polyethylene closed-cell foam. Evidence of precursor waves was observed in all three foam samples under various compressive wave loadings. Experiments with an impermeable membrane are used to determine if the precursor wave in an open-cell foam is a result of gas filtration or an elastic response of the foam. The differences between quasi-static and shock compression of foams is discussed in terms of their compressive strain histories and the implications for the energy absorption capacity of foam in both loading scenarios. Through a comparison of shock tube and blast wave loading techniques, suggestions are made concerning the accurate measurements of the principal shock Hugoniot in foams.  相似文献   

2.
This article introduces a mesoscopic formulation for modeling the dynamic response of visco-elastic, open-cell solid foams. The effective material response is obtained by enforcing on a representative 3D unit cell the principle of minimum action for dissipative systems. The resulting model accounts explicitly for the foam topology, the elastic and viscous properties of the cell wall, and the inertial effects arising from non-affine motion within the cells. The microinertial effects become significant in retarding the foam collapse during exceedingly high strain-rate loading. As an application example, a heterogenous case of compressive deformation at high strain rate is simulated utilizing the present model as a constitutive update in a non-linear finite element analysis code. This FEM simulation shows the ability of the model to capture the progressive foam collapse during the dynamic compression as observed in experimental studies. Using the microscopic model, the inertial and viscous strain-rate effects are investigated through the foam density, viscosity, and relative density. Based on the physics incorporated into the local cell model, we provide insight into the physical mechanisms responsible for the experimentally observed strain-rate effects on the behavior of dynamically loaded foam materials.  相似文献   

3.
提出一种二维非线性弹塑性质量-弹簧-连杆模型,该模型将泡沫金属材料离散成许多质量块,质量块在受载方向由非线性弹塑性弹簧连接,垂直于受载方向由可延伸的弹性连杆铰接。采用该模型模拟并分析了层非均匀泡沫金属材料及局部不均匀泡沫金属材料在冲击载荷下的变形特性,说明了非均匀性对泡沫金属材料冲击变形的影响。  相似文献   

4.
A model for the behavior of low-density, open-cell foam under compressive strain is proposed. Using this model, a tractable relationship between the normalized permeability and the applied strain is developed. An experimental study of the effect of strain on the permeability of open-cell polyurethane foams is presented. The experiments are performed using a Newtonian fluid in the fully laminar regime, where viscous forces are assumed to dominate. The model is found to describe the experimental data well and be independent of the foam cell size, the direction of flow with respect to the foam rise direction, and the properties of the saturating fluid. In a companion paper, the model for the permeability of open-cell foam is combined with Darcy’s law to give the contribution of viscous fluid flow to the stress–strain response of a reticulated foam under dynamic loading.  相似文献   

5.
This study is concerned with the understanding and modeling of the compressive response of open cell foams. The response starts with a nearly linear elastic regime which terminates into a limit load followed by an extensive load plateau. The plateau, which is responsible for the excellent energy absorption capacity of foams, is followed by a second stiff branch. Results from polyester urethane open cell foams with relative densities of about 0.025 are used to illustrate this behavior using experiments coupled with several levels of modeling. The experiments include characterization of the microstructure and the properties of the base material and measurement of the compressive response of the foams of various cell sizes.A sequence of models for predicting the complete response of such foam is developed. The foam is idealized to be periodic using the space-filling Kelvin cell assigned the major geometric characteristics found in the foams tested. The cells are elongated in the rise direction, the ligaments are assumed to be straight, to have Plateau border cross-sections and nonuniform cross-sectional area distribution. The ligaments are modeled as shear-deformable extensional beams and the base material is assumed to be linearly elastic. Prediction of the initial elastic moduli are addressed in Part I. Closed form expressions for the material constants are presented as well as results using a FE model of the characteristic cell. Comparison between measurements and predictions is very favorable. The paper finishes with results from a limited parametric study of the elastic moduli. The results demonstrate that inclusion of the geometric complexities mentioned above is essential for successful prediction of the moduli of such foams. The nonlinear parts of the response including the foam crushing behavior are addressed in Part II.  相似文献   

6.
采用原位观测的方法研究了脆性泡沫铝材料在压缩载荷下细观与宏观断裂破坏规律和吸能机理。针对多孔泡沫金属材料提出一种细观原位加载实验方法,采用特别设计与制备的试件,在S570扫描电镜下研究了特定胞孔在压缩过程中孔壁的失效顺序和破坏规律,并揭示了能量吸收的细观机理。对块体材料的宏观压缩实验表明,脆性泡沫铝是以多个断裂带的形式破坏。研究发现,孔壁缺陷和胞孔形态缺陷是诱发断裂带形成与发展的重要因素。依据尺寸效应对细观与宏观实验下泡沫铝的性能进行了比较。  相似文献   

7.
The permanent residual strain in aluminum (Al) alloy foams induced by compressive fatigue gradually increases with the increasing number of loading cycles. Consequently, the progressive shortening of Al-alloy foam degrades the dynamic material performance by the failure and ratcheting of multi-cells in the foam. In this paper, the dynamic properties of Al-alloy foams damaged by compressive fatigue were studied. The beam specimens with various residual strains were made by cyclic compression-compression stress. The dynamic bending modulus and loss factor were evaluated by using a beam transfer function method. As a result, the dynamic bending stiffness of Al-alloy foam turned out to be decreased due to damage while the loss factor was improved because of the increasing energy dissipation of such factors as cracked cell walls formed during the shortening process of the foam. The loss factor shows a manifest dependence on the fatigue residual strain.  相似文献   

8.
泡沫铝合金动态力学性能实验研究   总被引:6,自引:0,他引:6  
利用分离式霍布金森压杆(SHPB)实验技术和MTS材料实验机对两组不同孔径、不同密度的开孔泡沫铝合金进行了准静态和动态压缩实验研究。实验结果表明:泡沫铝合金的静态和动态变形过程均具有泡沫材料变形的三个阶段特征。开孔泡沫铝合金的变形是均匀变化过程,并不出现局部的变形带。与相对密度对力学性能的影响相比,孔径大小的影响可以忽略不计。在考察的应变率范围内,屈服应力对应变率并不很敏感。  相似文献   

9.
泡沫材料的宏观力学性能主要取决于基体材料的力学特性及其微细观结构特征,基于细观力学模型的分析方法是泡沫材料力学性能研究的重要途径。文中基于Matlab语言和Abaqus软件构建了描述中等孔隙率开孔弹性泡沫材料微结构特征的三维随机分布球形泡孔模型,并采用有限元方法对弹性泡沫压缩变形进行了模拟,并计算给出了不同孔隙率弹性泡沫材料弹性模量、剪切模量、体积模量以及泊松比的分布,建立了相应的唯象表达式。与理论模型及测试结果的比较表明,本文基于三维随机泡孔模型模拟结果构建的唯象表达式能够对弹性泡沫材料的弹性力学性能给出很好的预测。  相似文献   

10.
The compressive behavior of open-cell aluminum alloy foam and stainless steel woven textile core materials have been investigated at three different deformation rate regimes. Quasi-static compressive tests were performed using a miniature loading frame, intermediate rates were achieved using a stored energy Kolsky bar, and high strain rate tests were performed using a light gas gun.In agreement with previous studies on foam materials, the strain rate was not found to have a significant effect on the plateau stress of metallic foams. For all the tests, real time imaging of the specimen combined with digital image correlation analysis allowed the determination of local deformation fields and failure modes. For the Kolsky bar tests, the deformations in the foam specimen were found to be more distributed than for the quasi-static test, which is attributed to moderate inertia effects. The differences in failure mode are more dramatic for the gas gun experiments, where a full compaction shock wave is generated at the impact surface. The stresses in front and behind the shock wave front were determined by means of direct and reverse gas gun impact tests, i.e., stationary and launched specimen, respectively. A one-dimensional shock wave model based on an idealized foam behavior is employed to gain insight into the stress history measurements. We show that the predictions of the model are consistent with the experimental observations. Woven textile materials exhibited moderate dependence of strength on the deformation rate in comparison with open-cell foam materials.  相似文献   

11.
An anisotropic compressible plasticity model is incorporated into the framework of the micromorphic continuum theory in order to describe some size effects observed in ductile nickel foams. This continuum model reproduces the fact that the presence of a machined hole in a foam plate does not affect its mechanical response when the hole size becomes comparable to the cell size of the material. Finite element simulations are compared to strain field measurements in nickel foam plates with a machined hole for different hole sizes, in order to identify the characteristic length of the model. Based on a simple ductile damage law, the model is then shown to be able to account for the strong anisotropy of the initiation of crack propagation in central crack panels made of nickel foams under mode I loading conditions.  相似文献   

12.
Two families of finite element models of anisotropic, aluminum alloy, open-cell foams are developed and their predictions of elastic properties and compressive strength are evaluated by direct comparison to experimental results. In the first family of models, the foams are idealized as anisotropic Kelvin cells loaded in the <100> direction and in the second family more realistic models, based on Surface Evolver simulations of random soap froth with N3 cells are constructed. In both cases the ligaments are straight but have nonuniform cross sectional area distributions that resemble those of the foams tested. The ligaments are modeled as shear deformable beams with elasto-plastic material behavior. The calculated compressive response starts with a linearly elastic regime. At higher stress levels, inelastic action causes a gradual reduction of the stiffness that eventually leads to a stress maximum, which represents the strength of the material. The periodicity of the Kelvin cell enables calculation of the compressive response up to the limit stress with just a single fully periodic characteristic cell. Beyond the limit stress, deformation localizes along the principal diagonals of the microstructure. Consequently beyond the limit stress the response is evaluated using finite size 3-D domains that allow the localization to develop. The random models consist of 3-D domains of 216, 512 or 1000 cells with periodicity conditions on the compressed ends but free on the sides. The compressive response is also characterized by a limit load instability but now the localization is disorganized resembling that observed in experiments. The foam elastic moduli and strengths obtained from both families of models are generally in very good agreement with the corresponding measurements. The random foam models yield 5–10% stiffer elastic moduli and slightly higher strengths than the Kelvin cell models. Necessary requirements for this high performance of the models are accurate representation of the material distribution in the ligaments and correct modeling of the nonlinear stress–strain response of the aluminum base material.  相似文献   

13.
Mechanical, thermo-mechanical, and fluid dynamic simulations of open-cell foams require an accurate geometry model. Usually, models are derived from computer- tomography (CT) data which do not allow analysing systematically variation and optimisation of the geometry. On the other hand, entirely computer generated models are mostly assembled of primitive objects like cylinders. This disregards strut thickness variations and node rounding which are observed in real open-cell foams. This paper presents an approach to generate models of ceramic open-cell foams using simple objects with variable thickness generated by implicit functions. This approach can also account for cavities within struts and nodes, which are observed in many real foam structures. The specific rounding at the foam nodes can be modelled by applying the transformation of Blinn. The quality of the generated foam models is verified using CT data of real foams.  相似文献   

14.
The present study is concerned with a numerical prediction and assessment of uncertainties in the macroscopic material properties of solid foams. The material properties are determined by means of a homogenization analysis considering a large scale representative volume element. The microstructure for the representative volume element is determined randomly using a Voronoï tesselation in Laguerre geometry with prescribed cell size distribution. For assessment of the scatter in the effective material response, the homogenization scheme is applied to subsets of the large scale representative volume element. By this means, an interrelation between the local microstructural characteristics and the local mesoscopic material response is established. In a first approach, the individual cells of the foam microstructure are employed as testing volume elements. As an alternative, a moving window technique is applied. The sets of homogenization results obtained by both approaches are evaluated by stochastic methods. For the local effective properties, a distinct scatter is observed. The results in both cases reveal that the local porosity is the most important influence parameter. For the microstructures investigated, only weak local correlations of the effective stiffnesses with a rapid spatial decay of the correlation is observed.  相似文献   

15.
The nonlinear deformation of a porous foam-type elastomeric material is studied, both theoretically and experimentally. The elastomer is modeled by the neo-Hookean material. The one-dimensional compressive behavior of the foam is analysed by using certain kinematic assumptions. The stress required to compress the foam is predicted by the model in terms of the porosity of the foam and the single constant in the neo-Hookean stress-strain form. A particular silicone foam is used as a test of the theory. The neo-Hookean constant is evaluated from a test of the homogeneous elastomer. Hence the behavior of the corresponding foam is predicted theoretically and compared with experimental results. The general results are applicable to closed-cells foams of intermediate density.  相似文献   

16.
17.
通孔泡沫铝的动态压缩行为   总被引:4,自引:0,他引:4  
在SHPB装置上对渗流法制备的通孔泡沫铝进行了动态压缩实验,研究了相对密度为0.341~0.419的通孔泡沫铝在10-3~2000 s-1应变率范围内的压缩响应特征和应变率相关性,并用扫描电镜(scanning electron microscope,SEM)分析了泡沫铝的压缩变形特征。实验结果表明,通孔泡沫铝有明显应变率效应,随应变率上升,泡沫铝流动应力提高。SEM观察结果揭示,在动态压缩下,通孔泡沫铝宏观上均匀变形,微观变形机制以泡孔横向伸展坍塌为主。  相似文献   

18.
金属泡沫填充薄壁圆管的轴压载荷-位移关系   总被引:2,自引:0,他引:2  
卢子兴  赵亚斌  陈伟  谢若泽 《力学学报》2010,42(6):1211-1218
将泡沫填充圆管的能量吸收视为泡沫与圆管两者之和, 基于包含偏心率效应的直链塑性铰模型和Reddy等对Alexander模型的改进结果, 对圆管的变形模式进行了更改, 以此来反映管壁与金属泡沫之间的相互作用效应, 导出了金属泡沫填充圆管的静、动态轴向平均压溃力的表达式. 通过理论预测与实验的对比, 发现理论预测偏低, 但与实验曲线的趋势保持一致, 比空管与金属泡沫的平均载荷之和略高一些. 此外, 泡沫填充圆管的平均压溃力随填充泡沫平台应力的增大而呈线性增加, 与已有研究结果及实际情况一致, 由此表明了模型的合理性.   相似文献   

19.
基于实验和理论建模研究了白炭黑增强硅泡沫材料在γ辐照剂量范围为0~1000kGy作用后的单轴压缩力学行为。实验结果表明辐照导致硅泡沫出现明显硬化现象,初始杨氏模量和固定应变下应力幅值均随γ辐照剂量近似线性增加。辐照后硅泡沫泡孔结构完整,硅橡胶基体中高分子交联反应占主导,且交联密度随辐照剂量线性增大。基于实验分析结果,实现了Ogden Hyperfoam超弹本构模型参数与辐照剂量的关联。结果表明初始剪切模量参数与辐照剂量成线性关系,硬化指数和泊松比参数与辐照剂量无关。基于应力应变实验数据拟合得到模型参数,并与未参与拟合的实验数据对比,验证了模型的准确性,表明该模型能够表征宽辐照剂量范围内硅泡沫的压缩力学行为。  相似文献   

20.
张鹏飞  刘志芳  李世强 《爆炸与冲击》2020,40(7):071402-1-071402-10

基于3D-Voronoi技术构建了泡沫铝芯层的三维细观有限元模型,对梯度泡沫铝夹芯管在内爆炸载荷下的动态响应进行了数值模拟。分析讨论了夹芯管结构内外管的壁厚、泡沫芯层的相对密度、芯层梯度分布等参数对夹芯管结构的抗爆性能与吸能性能的影响,并与无芯层的双层圆管进行了对比。结果表明:泡沫材料的相对密度可通过改变泡沫胞元大小和胞元壁厚进行调控,利用两种方式构建的夹芯管计算结果一致;保持内、外圆管总质量不变,增大内管壁厚可以有效减小外管的塑性变形,但会影响泡沫芯层的能量耗散;泡沫芯层的填充可以有效降低内管的塑性变形,正梯度泡沫铝夹芯管的抗爆性能优于均匀泡沫及负梯度泡沫夹芯管。

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号