首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a new approach for constitutive modeling of strain range dependent cyclic hardening is proposed by extending the kinematic hardening model based on the critical state of dynamic recovery. It is assumed that isotropic, as well as kinematic, hardening consists of several parts, and that each part of isotropic hardening evolves when the corresponding part of kinematic hardening is in the critical state of dynamic recovery. The extended model is capable of simulating the cyclic hardening behavior in which different characteristics of cyclic hardening appear depending on strain range. The model is verified by simulating the relatively large cyclic straining tests of 304 stainless steel at ambient temperature, in which cyclic hardening does not stabilize before rupture if strain range exceeds a certain value. The model is further verified by predicting the history dependence of cyclic hardening under incremental cyclic loading and the maximum plastic strain dependence of strain hardening in cyclic tension.  相似文献   

2.
In this part, the Khan–Huang–Liang (KHL) constitutive model was extended to account for kinematic hardening characteristic behavior of materials. The extended model is then generalized and used to simulate experimental response of oxygen free high conductivity (OFHC) copper under cyclic shear straining and biaxial tension–torsion (multiaxial ratchetting) experiments presented in Part I (Khan et al., 2007). In addition, a new modification for the non-linear kinematic hardening rule of Karim–Ohno (Abdel-Karim and Ohno, 2000) is proposed to simulate multiaxial ratchetting behaviors. Although, the kinematic hardening contributes the most to the response, it is shown that, the loading rate effect, and a coupled isotropic and kinematic hardening effect should also be considered while simulating the multiaxial ratchetting behavior of OFHC copper. Furthermore, the newly modified kinematic hardening rules is able to fairly well simulate the multiaxial ratchetting experiments under different loading conditions, irrespective of the value of applied axial tensile stress, shear strain amplitude, pre-cyclic hardening and/or loading sequence.  相似文献   

3.
Finite element simulations are used to study strain localization during uniaxial tensile straining of a single crystal with properties representative of pure Al. The crystal is modeled using a constitutive equation incorporating self- and latent-hardening. The simulations are used to investigate the influence of the initial orientation of the loading axis relative to the crystal, as well as the hardening and strain rate sensitivity of the crystal on the strain to localization. We find that (i) the specimen fails by diffuse necking for strain rate exponents m < 100, and a sharp neck for m > 100. (ii) The strain to localization is a decreasing function of m for m < 100, and is relatively insensitive to m for m > 100. (iii) The strain to localization is a minimum when the tensile axis is close to (but not exactly parallel to) a high symmetry direction such as [1 0 0] or [1 1 1] and the variation of the strain to localization with orientation is highly sensitive to the strain rate exponent and latent-hardening behavior of the crystal. This behavior can be explained in terms of changes in the active slip systems as the initial orientation of the crystal is varied.  相似文献   

4.
Uniaxial tension and compression experiments on [0 0 1] and [0 1 1] oriented molybdenum nano-pillars exhibit tension-compression asymmetry, a difference in attained stresses in compression vs. tension, which is found to depend on crystallographic orientation and sample size. We find that (1) flow stresses become higher at smaller diameters in both orientations and both loading directions, (2) compressive flow stresses are higher than tensile ones in [0 0 1] orientation, and visa versa in [0 1 1] orientation, and (3) this tension-compression asymmetry is in itself size dependent. We attribute these phenomena to the dependence of twinning vs. antitwinning deformation on loading direction, to the non-planarity of screw dislocation cores in Mo crystals, and to the possibly lesser role of screw dislocations in governing nano-scale plasticity compared with bulk Mo.  相似文献   

5.
Numerical simulations and experimental results of nanoindentation on single crystal copper in three crystallographic orientations [(1 0 0), (0 1 1) and (1 1 1)] using a spherical indenter (3.4 μm radius) were reported. The simulations were conducted using a commercial finite element code (ABAQUS) with a user-defined subroutine (VUMAT) that incorporates large deformation crystal plasticity constitutive model. This model can take full account of the crystallographic slip as well as the orientation effects during nanoindentation. Distributions of the out-of-plane displacements and shear stresses as well as shear strains were obtained for indentation depths of up to 310 nm. The experimental studies were conducted using an MTS Nano Indenter (XP) system from which the load–displacement relationships were obtained while the surface topography as well as the surface profile along a line scan of indents were obtained using a Digital Instruments (Dimension 3100) atomic force microscope (AFM). The top views of the indent pile-up patterns under the spherical indenter show two-fold, three-fold, and four-fold symmetries for the (0 1 1), (1 1 1), and (1 0 0) orientations, respectively. Attempt was made to relate the anisotropic nature of the surface topographies around the indents in different crystallographic orientations of the single crystal copper specimens with the active slip systems and local texture variations. A reasonably good agreement had been obtained on several aspects of nanoindentation between the experimental and numerical results reported in this investigation as well as similar results reported in the literature. Thus, material properties of single crystal copper can be determined based on an appropriate numerical modeling of the nanoindentation on three crystallographic orientations.  相似文献   

6.
Compression tests followed by tension tests after re-machining were performed on annealed oxygen-free-high-conductivity copper cylinders. These tests were conducted at nine levels of maximum strain ranging from 5 to 50%. From this data, isotropic and kinematic hardening were calculated using 50, 1000 and 2000 microstrain offset definitions. Both isotropic and kinematic hardening were found to depend on the yield definition. Isotropic hardening, which increased with plastic strain with no signs of saturation, also increased with larger offset definition of yield. Kinematic hardening, which increased to 40% strain and appeared to saturate thereafter, decreased with higher offset definitions of yield.  相似文献   

7.
8.
This study evaluates the performance of several non-linear kinematic hardening rules in predicting the various biaxial ratchetting experiments of stainless steel (SS) 304L under various stress-controlled histories performed by Hassan et al. (2008). The non-linear kinematic hardening rules proposed by 9, 32, 33 and 160, 19, 12 and 13 and the different rules of Abdel-Karim (2009) are examined and carefully scrutinized. The considered kinematic hardening rules range from the simple classical ones to more detailed rules, which incorporate additional terms and/or parameters to simulate different factors that affect ratchetting. It is shown that none of the examined kinematic hardening rules is general enough to simulate all of the ratchetting responses for the experiments under consideration.  相似文献   

9.
Numerical and experimental evolutions of slip fields in notched Ni-Base Single Crystal superalloy tensile specimens are presented as a function of secondary crystallographic orientation. The numerical predictions based on three-dimensional anisotropic elasticity and crystal plasticity are compared with experimental observations. The results illustrate the strong dependence of the slip patterns and the plastic zone size and shape on the secondary orientation of notches, which can have important consequences on crack initiation. Specific orientations or non-symmetric notch geometries lead to non-symmetric patterns on both sides of the sample. The computations show that strongly different plastic zones are expected in the core of the sample and at free surfaces. The ability of the anisotropic elastic model to anticipate the plastic domains, based on identifying dominant slip systems, is confirmed by the crystal plasticity computations, at low load levels. An important observation is that kink shear banding is a real deformation mode operating at crack tips and notches in high strength nickel-based single crystal superalloys for specific orientations.  相似文献   

10.
The plastic deformations of tempered martensite steel representative volume elements with different martensite block structures have been investigated by using a nonlocal crystal plasticity model which considers isotropic and kinematic hardening produced by plastic strain gradients. It was found that pronounced strain gradients occur in the grain boundary region even under homogeneous loading. The isotropic hardening of strain gradients strongly influences the global stress–strain diagram while the kinematic hardening of strain gradients influences the local deformation behaviour. It is found that the additional strain gradient hardening is not only dependent on the block width but also on the misorientations or the deformation incompatibilities in adjacent blocks.  相似文献   

11.
12.
对FCC单晶体的率无关弹塑性力学响应的本构关系进行了数值模拟。用一个基于能量极值原理的数值计算方法来处理复杂的多面塑性问题,这种算法可以有效地模拟单晶体多滑移系的启动,在这一理论框架下,增量的应力应变关系可以从所构造的能量函数中推导出来。对于滑移系激活情况的判定则可转化为求解活动约束的非线性数学规划问题,通过对时间的离散,此问题又可细化为逐步二次规划问题,并采用有效集法来搜索启动滑移系,进而求得弹塑性本构关系,数值结果表明该方法具有稳定、收敛、可行的特点,在数值计算的基础上研究了单轴拉伸下晶体的不同取向对单晶体硬化程度和滑移系激活情况的影响。  相似文献   

13.
14.
It is shown in this paper that an extended form of Hills quadratic yield criterion for anisotropic sheet metal can be derived from an endochronic theory of plasticity. The extended form considers the combined isotropic–kinematic hardening and the anomalous behavior observed in the anisotropic plastic behavior of sheet metals can be accounted for by the concept of kinematic hardening.This form of anisotropic endochronic theory can accommodate the usual requirement of normality between the plastic strain rate and the yield function. In addition, the theory leads naturally to the expressions for back stresses. This work provides an additional example to show that the form of the intrinsic time is directly related to the form of the yield function.It is suggested that the coefficients of the quadratic yield function be determined from the yield stresses obtained from a set of tension tests.  相似文献   

15.
Atomistic simulations are used to investigate how the stress required for homogeneous nucleation of partial dislocations in single crystal copper under uniaxial loading changes as a function of crystallographic orientation. Molecular dynamics is employed based on an embedded-atom method potential for Cu at 10 and 300 K. Results indicate that non-Schmid parameters are important for describing the calculated dislocation nucleation behavior for single crystal orientations under tension and compression. A continuum relationship is presented that incorporates Schmid and non-Schmid terms to correlate the nucleation stress over all tensile axis orientations within the stereographic triangle. Simulations investigating the temperature dependence of homogeneous dislocation nucleation yield activation volumes of ≈0.5- and activation energies of . For uniaxial compression, full dislocation loop nucleation is observed, in contrast to uniaxial tension. One of the main differences between uniaxial tension and compression is how the applied stress is resolved normal to the slip plane on which dislocations nucleate—in tension, this normal stress is tensile, and in compression, it is compressive. Last, the tension-compression asymmetry is examined as a function of loading axis orientation. Orientations with a high resolved stress normal to the slip plane on which dislocations nucleate have a larger tension-compression asymmetry with respect to dislocation nucleation than those orientations with a low resolved normal stress. The significance of this research is that the resolved stress normal to the slip plane on which dislocations nucleate plays an important role in partial (and full) dislocation loop nucleation in FCC Cu single crystals.  相似文献   

16.
Polymer matrix composites are widely used in the automotive industry and undergo fatigue loadings. The investigation of the nonlinear cyclic behaviour of such materials is a required preliminary work for a confident fatigue design, but has not involved many publications in the literature. This paper presents an extensive experimental study conducted on a polyamide 66 reinforced with 35 wt% of short glass fibres (PA66 GF35), at room temperature. The material was tested in two conditions: dry-as-moulded (DAM) and at the equilibrium with air containing 50% of relative humidity (RH50).An exhaustive experimental campaign in tensile mode has been carried out, including various strain or stress rates, complex mechanical histories and local thermo-mechanical recordings. Such an extended database allowed us to highlight several complex physical phenomena: viscoelastic effects at different time scales, irrecoverable mechanisms, non-linear kinematic hardening, non-linear viscous flow rule, cyclic softening.Taking into account this advanced analysis, a constitutive model describing the cyclic behaviour is proposed. As the experimental database only includes uniaxial tensile tests, the general 3D anisotropic frame is reduced to an uniaxial model valid for a specific orientation distribution. The robust identification process is based on tests which enable the uncoupling between the underlined mechanical features. This strategy leads to a model which accurately predicts the cyclic behaviour of conditioned as well as dry materials under complex tensile loadings.  相似文献   

17.
18.
Biaxial tensile tests are performed on cruciform specimens with the help of direct biaxial testing machine. Small offset-strain yield curves are detected on an aluminium alloy (AL1200) rolled sheet submitted to irreversible radial and complex biaxial tensile loadings. A predominant kinematic hardening and an important isotropic expansion are observed. A yield curve distortion is observed as well but, unlike the traction–torsion case, its intensity appears to be linked to the loading type. Moreover, the strain responses are analyzed in order to point out the pronounced anisotropy of the rolled sheet and to check if the sheet behavior is in agreement with a plastic flow associated with the yield curve.  相似文献   

19.
This paper presents a new framework to predict the qualitative and quantitative variation in local plastic anisotropy due to crystallographic texture in body-centered cubic polycrystals. A multiscale model was developed to examine the contribution of mesoscopic and local microscopic behaviour to the macroscopic constitutive response of bcc metals during deformation. The model integrated a dislocation-based hardening scheme and a Taylor-based crystal plasticity formulation into the subroutine of an explicit dynamic FEM code (LS-DYNA). Numerical analyses using this model were able to predict not only correct grain rotation during deformation, but variations in plastic anisotropy due to initial crystallographic orientation. Optimal results were obtained when {1 1 0}〈1 1 1〉, {1 1 2}〈1 1 1〉, and {1 2 3}〈1 1 1〉 slip systems were considered to be potentially active. The predicted material heterogeneity can be utilised for research involving any texture-dependent work hardening behaviour, such as surface roughening.  相似文献   

20.
Equations for latent strengths in single slip, based upon the simple theory of finite distortional crystal hardening introduced by K.S. Havner and A.H. Shalaby (1977), are derived for both tensile and compression tests without restriction as to crystal class. Detailed comparisons between theoretical results and the experiments of P.J. Jackson and Z.S. Basinski (1967) on copper crystals in tension are presented. There is good qualitative agreement between theory and experiment regarding the diversity of anisotropic hardening among slip systems. Moreover, there is satisfactory quantitative agreement between the theory and the extrapolated experimental data in the stage III, large-strain range. It is suggested that further experimental investigation of latent hardening at large prestrains would be desirable.The simple theory predicts anisotropic hardening and the perpetuation of single slip in axial loading of cubic crystals initially oriented for single slip, but predicts symmetric, isotropic hardening of specimens initially oriented in positions of 4, 6 or 8-fold multiple-slip. These predictions are in general accord with experimental observations from tests of f.c.c. and b.c.c. crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号