首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An elastic membrane backed by a fluid-filled cavity in an elastic body is set into an infinite plane baffle. A time harmonic wave propagating in the acoustic fluid in the upper half-space is incident on the plane. It is assumed that the densities of this fluid and the fluid inside the cavity are small compared with the densities of the membrane and of the elastic walls of the cavity, thus defining a small parameter . Asymptotic expansions of the solution of this scattering problem as →0, that are uniform in the wave number k of the incident wave, are obtained using the method of matched asymptotic expansions. When the frequency of the incident wave is bounded away from the resonant frequencies of the membrane, the cavity fluid, and the elastic body, the resultant wave is a small perturbation (the “outer expansion”) of the specularly reflected wave from a completely rigid plane. However, when the incident wave frequency is near a resonant frequency (the “inner expansion”) then the scattered wave results from the interaction of the acoustic fluid with the membrane, the membrane with the cavity fluid, and finally the cavity fluid with the elastic body, and the resulting scattered field may be “large”. The cavity backed membrane (CBM) was previously analyzed for a rigid cavity wall. In this paper, we study the effects of the elastic cavity walls on modifying the response of the CBM. For incident frequencies near the membrane resonant frequencies, the elasticity of the cavity gives only a higher order (in ) correction to the scattered field. However, near a cavity fluid resonant frequency, and, of course, near an elastic body resonant frequency the elasticity contributes to the scattered field. The method is applied to the two dimensional problem of an infinite strip membrane backed by an infinitely long rectangular cavity. The cavity is formed by two infinitely long rectangular elastic solids. We speculate on the possible significance of the results with respect to viscoelastic membranes and viscoelastic instead of elastic cavity walls for surface sound absorbers.  相似文献   

2.
3.
Flow and pressure waves, originating due to the contraction of the heart, propagate along the deformable vessels and reflect due to tapering, branching, and other discontinuities. The size and complexity of the cardiovascular system necessitate a “multiscale” approach, with “upstream” regions of interest (large arteries) coupled to reduced-order models of “downstream” vessels. Previous efforts to couple upstream and downstream domains have included specifying resistance and impedance outflow boundary conditions for the nonlinear one-dimensional wave propagation equations and iterative coupling between three-dimensional and one-dimensional numerical methods. We have developed a new approach to solve the one-dimensional nonlinear equations of blood flow in elastic vessels utilizing a space-time finite element method with GLS-stabilization for the upstream domain, and a boundary term to couple to the downstream domain. The outflow boundary conditions are derived following an approach analogous to the Dirichlet-to-Neumann (DtN) method. In the downstream domain, we solve simplified zero/one-dimensional equations to derive relationships between pressure and flow accommodating periodic and transient phenomena with a consistent formulation for different boundary condition types. In this paper, we also present a new boundary condition that accommodates transient phenomena based on a Green’s function solution of the linear, damped wave equation in the downstream domain.  相似文献   

4.
The responses of a hard or soft target in the presence of a hard or soft half space are computed using space-time integral equations formulated in the time domain. The incident pressure wave is a ‘smoothed impulse“ with a Gaussian-shaped time dependence, whose width is of the order of a target dimension. A space-time integral equation for the pressure field and the gradient pressure field on the outside of the target surface is solved for the pressure and the pressure gradient by stepping on in time. The scattered field is then computed from these source fields. The technique is applicable to targets of arbitrary contour and is demonstrated for a sphere and right-circular cylinder at various locations relative to the half space.  相似文献   

5.
Biaxial proportional loading such as tension (compression)–internal pressure and bi-compression tests are performed on a Cu-Zn-Al and Cu-Al-Be shape memory polycrystals. These tests lead to the experimental determination of the initial surface of phase transformation (austenite→martensite) in the principal stress space (σ12). A first “micro–macro” modeling is performed as follows. Lattice measurements of the cubic austenite and the monoclinic martensite cells are used to determine the “nature” of the phase transformation, i.e. an exact interface between the parent phase and an untwinned martensite variant. The yield surface is obtained by a simple (Sachs constant stress) averaging procedure assuming random texture. A second modeling, performed in the context of the thermodynamics of irreversible processes, consists of a phenomenological approach at the scale of the polycrystal. These two models fit the experimental phase transformation surface well.  相似文献   

6.
Adrianus T. de Hoop   《Wave Motion》2002,36(4):335-346
The moving point load problem in soil dynamics is analyzed in the vertical particle displacement approximation. Prior to its motion, the load is stationary. From the instant at which it is set into motion it moves, with constant speed, along a straight path on the (horizontal) planar surface of a semi-infinite elastic medium. The modified Cagniard method for solving transient wave problems is used to determine closed-form expressions for the vertical component of the particle displacement from the elastodynamic wave equation of which only the vertical component is taken into account. The relevant approximation is standard in soil dynamics. Both the cases of “subsonic” and “supersonic” surface load speeds are considered. Methods to include losses in the model are briefly discussed. The study has been initiated with a view to the application of the results to the analysis of the ground motion generated by high-speed trains traveling on a poorly consolidated soil.  相似文献   

7.
John P. Boyd 《Wave Motion》1995,21(4):311-330
“Weakly nonlocal” solitary waves differ from ordinary solitary waves by possessing small amplitude, oscillatory “wings” that extend indefinitely from the large amplitude “core”. Such generalized solitary waves have been discovered in capillarygravity water waves, particle physics models, and geophysical Rossby waves. In this work, we present explicit calculations of weakly nonlocal envelope solitary waves. Each is a sine wave modulated by a slowly-varying “envelope” that itself propagates at the group velocity. Our example is the cubically nonlinear Klein-Gordon equation, which is a model in particle physics (φ4 theory) and in electrical engineering (with a different sign). Both cases have weakly nonlocal“breather” solitons. Via the Lorentz invariance, each breather generates a one-parameter family of nonlocal envelope solitary waves. The φ4 breather was described and calculated in earlier work. This generates envelope solitons which have “wings” that are (mostly) proportional to the second harmonic of the sinusoidal factor. In this article, we calculate breathers and envelope solitary waves for the second, electrical engineering case. Since these, unlike the φ4 waves, contain only odd harmonics, the envelope solitary waves are nonlocal only via the third harmonic.  相似文献   

8.
The models for the plastic behaviour of steels during phase transformations proposed in Part I and in a previous paper ( et al. [1986b]) for the case of ideal-plastic phases are extended to include strain-hardening effects (isotropic or kinematic hardening). An expression for the transformation plastic strain rate is obtained by modifying the treatment of Part I in a suitable manner. The classical plastic strain rate is also studied in a similar way. Complementary evolution equations for the hardening parameters are finally given, taking into account the possible “recovery” of strain hardening during transformations (i.e., the fact that the newly formed phase can “forget,” partially or totally, the previous hardening).  相似文献   

9.
We consider an incompressible and inviscid fluid flow, called “swirl flow” that rotates around a certain axis in three-dimensional space. We investigate numerically the dynamics of a three-dimensional vortex sheet which is defined as a surface across which the velocity field of the swirl flow changes discontinuously. The vortex method and a fast summation method are implemented on a parallel computer. These numerical methods make it possible to compute the evolution of the vortex sheet for a long time and to describe the complex dynamics of the sheet.  相似文献   

10.
11.
A “two time scale” asymptotic expansion procedure describing the modulation of a propagating simple wave governed by a system of non-linear partial differential equations is applied to the deflection waves of non-linear elastic strings. Rapid deflection signals propagating into a general slowly varying disturbance are modulated. In addition, they themselves affect the equations for that disturbance. The two effects are separated naturally when, to prevent the cumulative growth inherent in most “high frequency” procedures, an averaging technique is introduced. The interaction of two deflection waves is given as a specific example.  相似文献   

12.
In this paper, shakedown of a cohesive-frictional half space subjected to moving surface loads is investigated using Melan’s static shakedown theorem. The material in the half space is modelled as a Mohr–Coulomb medium. The sliding and rolling contact between a roller and the half space is assumed to be plane strain and can be approximated by a trapezoidal as well as a Hertzian load distribution. A closed form solution to the elastic stress field for the trapezoidal contact is derived, and is then used for the shakedown analysis. It is demonstrated that, by relaxing either the equilibrium or the yield constraints (or both) on the residual stress field, the shakedown analysis leads to various bounds for the elastic shakedown limit. The differences among the various shakedown load factors are quantitatively compared, and the influence of both Hertzian and trapezoidal contacts for the half space under moving surface loads is studied. The various bounds and shakedown limits obtained in the paper serve as useful benchmarks for future numerical shakedown analysis, and also provide a valuable reference for the safe design of pavements.  相似文献   

13.
14.
An experimental investigation has been carried out on velocities and amplitudes of pressure disturbances in fluidized beds made of 100–200 μm glass ballotini. Disturbances were originated by gas jetting in a 0.35 m i.d. fluidized bed. A fluidization tube 0.10 m i.d. has also been used. Different types of disturbances have been induced in the bed contained in this tube: injection of a freely rising bubble and of a captive bubble; injection of a bubble chain; and compression of the bed free surface. The dynamic wave character of the disturbances has been shown. Velocities and amplitudes of waves moving through the beds have been measured. In particular, wave velocities have been compared with theoretical results obtained by the application of “pseudo-homogeneous” and “separated phase flow” models.  相似文献   

15.
Experimental data and correlations available in the literature for the liquid holdup εL and the pressure gradient ΔPTP/L for gas-liquid pipe flow, generally, do not cover the domain 0 < εL < 0.06. Reliable pressure-drop correlations for this holdup range are important for calculating flow rates of natural gas, containing traces of condensate. In the present paper attention is focused on reliable measurements of εL and ΔPTPIL values and on the development of a phenomenological model for the liquid-holdup range 0 < εL < 0.06. This model is called the “apparent rough surface” model and is referred to as the ARS model. The experimental results presented in this paper refer to air-water and air-water + ethyleneglycol systems with varying transport properties in horizontal straight smooth glass tubes under steady-state conditions. The holdup and pressure gradient values predicted with the ARS model agree satisfactorily with both our experimental results and data obtained from the literature referring to small liquid-holdup values 0 < εL < 0.06. Further, it has been shown that in the domain 38 < < 72 mPa m the interfacial tension of the gas-liquid system has no significant effect on the liquid holdup. The pressure gradient, however, increases slightly with decreasing surface tension values.  相似文献   

16.
A rock-support analysis is done assuming that the rock behaves elastic/viscoplastically while the support can be any kind of nonlinear support. The case of circular tunnels is considered and the formulation of the mathematical problem is discussed. Furthermore, the creep of rock around a tunnel with nonlinear supports (called “yieldable” or “self-adapting” supports) to limit the closure of the tunnel is studied. It is shown that the ultimate ground reaction is not unique since it depends on the loading history such as excavation layout and support design. For relatively small pressures exerted by the support, it is shown that the onset of failure by dilatancy can be determined. Two kinds of solutions are given: a simplified approximate one, which is easy to apply and with which the qualitative discussion of the solution is simple and revealing, and a more rigorous general elaborate numerical solution obtained by using computer programs.  相似文献   

17.
A so-called “interaction-box” formalism, which has recently been introduced to describe hysteresis in dynamical systems in the case of higher harmonic generation, is further discussed and generalized to describe the phenomenon of subharmonic generation. In this case, the increase in the periodicity of the response is reflected in the formation of multiple loops in the Effect (output) vs. Cause (input) diagrams. Conversely, we show how this type of response represents a sort of “signature” of the system, and can thus be employed to draw general conclusions about the features of the latter. A specific example of a nonlinear system is chosen to illustrate the approach, namely a vibrating cantilever beam with a breathing crack. Effect vs. Cause curves are calculated for this system in the presence of higher harmonics and subharmonics.  相似文献   

18.
A fire testing facility named the “MSU Fire Tunnel” has been developed. The intent was to devise a testing apparatus that controlled the flow of oxidizing gas in the tunnel to an extent not heretofore accomplished. A novel approach was developed for mounting the flame-spread samples flush with the surface of an “airfoil”. This method avoids previous complications of determining the exact position of the leading edge of the velocity boundary layer. Data were gathered for the flow field using hot-wire anemometry. These data indicated that a zero-pressure gradient Blasius boundary layer flow was established along the airfoil and fuel sample surfaces. Opposed-flow flame-spread tests were conducted and correlations were produced that support the predictive capacity of this apparatus. It was shown that the opposed flow flame-spread data allowed distinctions to be made between correlations of previous researchers. No such comparisons were formerly possible. A finite-chemistry correlation was shown to be consistent with, and similar to, correlations derived in the previous work.  相似文献   

19.
In this paper a hyperelastic constitutive model is developed for neo-Hookean composites with aligned continuous cylindrical pores in the finite elasticity regime. Although the matrix is incompressible, the composite itself is compressible because of the existence of voids. For this compressible transversely isotropic material, the deformation gradient can be decomposed multiplicatively into three parts: an isochoric uniaxial deformation along the preferred direction of the material (which is identical to the direction of the cylindrical pores here); an equi-biaxial deformation on the transverse plane (the plane perpendicular to the preferred direction); and subsequent shear deformation (which includes “along-fibre” shear and transverse shear). Compared to the multiplicative decomposition used in our previous model for incompressible fibre reinforced composites [Guo, Z., Peng, X.Q., Moran, B., 2006, A composites-based hyperelastic constitutive model for soft tissue with application to the human annulus fibrosus. J. Mech. Phys. Solids 54(9), 1952–1971], the equi-biaxial deformation is introduced to achieve the desired volume change. To estimate the strain energy function for this composite, a cylindrical composite element model is developed. Analytically exact strain distributions in the composite element model are derived for the isochoric uniaxial deformation along the preferred direction, the equi-biaxial deformation on the transverse plane, as well as the “along-fibre” shear deformation. The effective shear modulus from conventional composites theory based on the infinitesimal strain linear elasticity is extended to the present finite deformation regime to estimate the strain energy related to the transverse shear deformation, which leads to an explicit formula for the strain energy function of the composite under a general finite deformation state.  相似文献   

20.
Some recent applications of the theory of non-linear waves in smoothly inhomogeneous and weakly dissipative media are discussed in the paper. The possibilities of “linear-ray” approximation when the non-linear self-refraction effects may be neglected in comparison with the non-linear wave distortion along the rays are demonstrated for weak acoustic shocks in stratified atmospheres and ocean, the solitary waves in shallow water of variable depth and the solitons in elastic rods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号