首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A digital technique for multiplexing and encryption of four RGB images has been proposed using the fractional Fourier transform (FRT). The four input RGB images are first converted into their indexed image formats and subsequently multiplexed into a single image through elementary mathematical steps prior to the encryption. The encryption algorithm uses two random phase masks in the input- and the FRT domain, respectively. These random phase masks are especially designed using the input images. As the encryption is carried out through a single channel, the technique is more compact and faster as compared to the multichannel techniques. Different fractional orders, the random masks in input-, and FRT domain are the keys for decryption as well as de-multiplexing. The algorithms to implement the proposed multiplexing-, and encryption scheme are discussed, and results of digital simulation are presented. Simulation results show that the technique is free from cross-talk. The performance of the proposed technique has also been analyzed against occlusion, noise, and attacks using partial windows of the correct random phase keys. The robustness of the technique against known-, and chosen plain-text attacks has also been explained.  相似文献   

2.
We propose a non-linear image encryption scheme for RGB images, using natural logarithms and fractional Fourier transform (FRT). The RGB image is first segregated into the component color channels and each of these components is hidden inside a random mask (RM) using base changing rule of logarithms. Subsequently, these channels are encrypted independently using random phase masks (RPMs) and the FRT. The fractional orders of the FRT, input random masks and random phase masks used in each channel serve as the keys for encryption and decryption. The algorithms to implement the proposed scheme are discussed, and results of digital simulation are presented. The robustness of the technique is analyzed against the variation in fractional orders of the FRT, change of RMs and RPMs, and occlusion of the encrypted data, respectively. Performance of the scheme has also been studied against the attacks using noise and partial windows of the correct RPMs. The proposed technique is shown to perform better against some attacks in comparison to the conventional linear methods.  相似文献   

3.
We propose a method for the encryption of twin color images using fractional Fourier transform (FRT). The color images to be encrypted are converted into the indexed image formats before being processed through twin image encryption algorithm based on the FRT. The proposed algorithm uses one random code in the image domain and one random phase code in the FRT domain to perform double image encryption. The conversion of both the input RGB images into their indexed formats facilitates single-channel processing for each image, and is more compact and robust as compared to multichannel techniques. Different fractional orders, the random masks in image- and FRT domain are the keys to enhance the security of the proposed system. The algorithms to implement the proposed encryption and decryption schemes are discussed, and results of digital simulation are presented. We examine sensitivity of the proposed scheme against the use of unauthorized keys (e.g. incorrect fractional orders, incorrect random phase mask etc.). Robustness of the method against occlusion and noise has also been discussed.  相似文献   

4.
A new method for image encryption using integral order radial Hilbert transform (RHT) filter in the fractional Fourier transform (FRT) domain has been proposed. The technique is implemented using the popular double random phase encoding method in the fractional Fourier domain. The random phase masks (RPMs), integral orders of the RHT, fractional orders of FRT, and indices of the Jigsaw transform (JT) have been used as keys for encryption and decryption. Simulation results have been presented and the schematic representation for optical implementation has been proposed. The mean-square-error and signal-to-noise ratio between the decrypted image and the input image have been calculated for the correct as well as incorrect orders of the RHT. Effect of occlusion and noise on the performance of the proposed scheme has also been studied. The robustness of the technique has been verified against attack using partial windows of the correct random phase masks. Similar investigations have also been carried out for the chosen-, and the known-plain-text attacks.  相似文献   

5.
基于gyrator变换和矢量分解的非对称图像加密方法   总被引:1,自引:0,他引:1       下载免费PDF全文
姚丽莉  袁操今  强俊杰  冯少彤  聂守平 《物理学报》2016,65(21):214203-214203
本文结合矢量分解和gyrator变换的数学实现得到了一种新的非对称图像加密算法,它将待加密图像先通过矢量分解加密到两块纯相位板中,然后利用从gyrator变换的数学实现中推导出来的加密算法加密其中一块相位板,获得最终的实值密文.另一块相位板作为解密密钥.算法的解密密钥不同于加密密钥,实现了非对称加密,加密过程中产生的两个私钥增大了算法的安全性.数值模拟结果验证了该算法的可行性和有效性.  相似文献   

6.
A technique for image encryption using fractional Fourier transform (FRT) and radial Hilbert transform (RHT) is proposed. The spatial frequency spectrum of the image to be encrypted is first segregated into two parts/channels using RHT, and image subtraction technique. Each of these channels is encrypted independently using double random phase encoding in the FRT domain. The different fractional orders and random phase masks used during the process of encryption and decryption are the keys to enhance the security of the proposed system. The algorithms to implement the proposed encryption and decryption scheme are discussed, and results of digital simulation are presented.  相似文献   

7.
We propose a new method for image encryption, using gyrator transform and chaos theory. Random phase masks are generated using chaos functions and are called as chaotic random phase masks. In the proposed technique, the image is encrypted using gyrator transform and two chaotic random phase masks. Three types of chaos functions have been used to generate the chaotic random phase masks. These chaos functions are the logistic map, the tent map and the Kaplan-Yorke map. The computer simulations are presented to verify the validity of the proposed technique. The mean square errors have been calculated. The robustness of the proposed technique to blind decryption in terms of rotation angle and the seed values of the chaotic random phase mask have been evaluated. The optical implementation of the encryption and the decryption technique has been proposed.  相似文献   

8.
A multiple-image cryptosystem is proposed based on the cascaded fractional Fourier transform. During an encryption procedure, each of the original images is directly separated into two phase masks. A portion of the masks is subsequently modulated into an interim mask, which is encrypted into the ciphertext image; the others are used as the encryption keys. Using phase truncation in the fractional Fourier domain, one can use an asymmetric cryptosystem to produce a real-valued noise-like ciphertext, while a legal user can reconstruct all of the original images using a different group of phase masks. The encryption key is an indivisible part of the corresponding original image and is still useful during decryption. The proposed system has high resistance to various potential attacks, including the chosen-plaintext attack. Numerical simulations also demonstrate the security and feasibility of the proposed scheme.  相似文献   

9.
基于干涉原理的虚拟光学加密系统   总被引:2,自引:0,他引:2  
秦怡  张帅  巩琼  李根全  吕晓东 《光学学报》2012,32(10):1007001-85
提出了一种虚拟光学加密系统。该光学加密系统采用了同轴全息技术的基本架构,将被加密图像作为被记录物体,而在参考光波及干涉场光路中分别引入两个独立的随机相位板,全息面上的输出即为加密结果,这两个随机相位板即为加密及解密所用密钥。理论分析表明,在恰当设置物光波与参考光波衍射场比例的情况下,任意一灰度图像均可被加密为平稳的复随机白噪声,可以抵御盲反卷积攻击。采用计算机模拟,证实了该系统的加密效果及对抗暴力攻击的能力。研究了解密时附加参数及噪音攻击对解密结果的影响,结果表明本系统抗噪音攻击能力一般,但对附加参数有极高的敏感性。  相似文献   

10.
Color image encryption and decryption using fractional Fourier transform   总被引:1,自引:0,他引:1  
We propose the encryption of color images using fractional Fourier transform (FRT). The image to be encrypted is first segregated into three color channels: red, green, and blue. Each of these channels is encrypted independently using double random phase encoding in the FRT domain. The different fractional orders and random phase masks used during the process of encryption and decryption are the keys to enhance the security of the proposed system. The algorithms to implement the proposed encryption and decryption scheme are discussed, and results of digital simulation are presented. The technique is shown to be a powerful one for colored text encryption. We also outline the implementation of the algorithm and examine its sensitiveness to changes in the fractional order during decryption.  相似文献   

11.
Narendra Singh 《Optik》2010,121(10):918-925
We propose a new method for image encryption using improper Hartley transform and chaos theory. Improper Hartley transform is a Hartley transform in which the phase between the two Fourier transforms is a fractional multiple of π/2. This fractional order is called fractional parameter and serves as a key in the image encryption and decryption process. Four types of chaos functions have been used. These functions are the logistic map, the tent map, the Kaplan-Yorke map and the Ikeda map. Random intensity masks have been generated using these chaotic functions and are called chaotic random intensity masks. The image is encrypted by using improper Hartley transform and two chaotic random intensity masks. The mean square error has been calculated. The robustness of the proposed technique in terms of blind decryption has been tested. The computer simulations are presented to verify the validity of the proposed technique.  相似文献   

12.
A multiple-image encryption scheme is proposed based on the asymmetric technique, in which the encryption keys are not identical to the decryption ones. First, each plain image is scrambled based on a sequence of chaotic pairs generated with a system of two symmetrically coupled identical logistic maps. Then, the phase-only function of each scrambled image is retrieved with an iterative phase retrieval process in the fractional Fourier transform domain. Second, all phase-only functions are modulated into an interim, which is encrypted into the ciphertext with stationary white noise distribution by using the fractional Fourier transform and chaotic diffusion. In the encryption process, three random phase functions are used as encryption keys to retrieve the phase-only functions of plain images. Simultaneously, three decryption keys are generated in the encryption process, which make the proposed encryption scheme has high security against various attacks, such as chosen plaintext attack. The peak signal-to-noise is used to evaluate the quality of the decrypted image, which shows that the encryption capacity of the proposed scheme is enhanced considerably. Numerical simulations demonstrate the validity and efficiency of the proposed method.  相似文献   

13.
A novel nonlinear image encryption scheme based on a fully phase nonzero-order joint transform correlator architecture (JTC) in the Gyrator domain (GD) is proposed. In this encryption scheme, the two non-overlapping data distributions of the input plane of the JTC are fully encoded in phase and this input plane is transformed using the Gyrator transform (GT); the intensity distribution captured in the GD represents a new definition of the joint Gyrator power distribution (JGPD). The JGPD is modified by two nonlinear operations with the purpose of retrieving the encrypted image, with enhancement of the decrypted signal quality and improvement of the overall security. There are three keys used in the encryption scheme, two random phase masks and the rotation angle of the GT, which are all necessary for a proper decryption. Decryption is highly sensitivity to changes of the rotation angle of the GT as well as to little changes in other parameters or keys. The proposed encryption scheme in the GD still preserves the shift-invariance properties originated in the JTC-based encryption in the Fourier domain. The proposed encryption scheme is more resistant to brute force attacks, chosen-plaintext attacks, known-plaintext attacks, and ciphertext-only attacks, as they have been introduced in the cryptanalysis of the JTC-based encryption system. Numerical results are presented and discussed in order to verify and analyze the feasibility and validity of the novel encryption–decryption scheme.  相似文献   

14.
Chaos based multiple image encryption using multiple canonical transforms   总被引:2,自引:0,他引:2  
We propose a new method for multiple image encryption using linear canonical transforms and chaotic maps. Three linear canonical transforms and three chaotic maps are used in the proposed technique. The three linear canonical transforms that have been used are the fractional Fourier transform, the extended fractional Fourier transform and the Fresnel transform. The three chaotic maps that have been used are the tent map, the Kaplan-Yorke map and the Ikeda map. These chaotic maps are used to generate the random phase masks and these random phase masks are known as chaotic random phase masks. The mean square error and the signal to noise ratio have been calculated. Robustness of the proposed technique to blind decryption has been evaluated. Optical implementation of the technique has been proposed. Experimental and simulations results are presented to verify the validity of the proposed technique.  相似文献   

15.
A new optical security system is proposed using a shifted phase-encoded joint transform correlation (JTC) architecture. In the proposed technique, at first, the address code is fed into two channels where one channel is shifted by 180°. The output signals from both the channels are phase-masked and then added with the input image to be encrypted. The joint power spectrum (JPS) obtained from one channel is subtracted from the JPS of the other channel, and the modified JPS is inverse Fourier transformed to yield the encrypted image. For decryption, the received signal is Fourier transformed and multiplied by the phase mask and the address code, which is then inverse Fourier transformed to generate the output signal. The proposed technique does not require complex conjugate of the address code otherwise required in the classical double random phase encryption. Also the decryption result is much more enhanced when compared to the output generated by alternate JTC techniques. Computer simulation results verify that the encryption and decryption are very much secure and efficient in both noise-free and noisy conditions.  相似文献   

16.
We propose an image encryption scheme using chaotic phase masks and cascaded Fresnel transform holography based on a constrained optimization algorithm. In the proposed encryption scheme, the chaotic phase masks are generated by Henon map, and the initial conditions and parameters of Henon map serve as the main secret keys during the encryption and decryption process. With the help of multiple chaotic phase masks, the original image can be encrypted into the form of a hologram. The constrained optimization algorithm makes it possible to retrieve the original image from only single frame hologram. The use of chaotic phase masks makes the key management and transmission become very convenient. In addition, the geometric parameters of optical system serve as the additional keys, which can improve the security level of the proposed scheme. Comprehensive security analysis performed on the proposed encryption scheme demonstrates that the scheme has high resistance against various potential attacks. Moreover, the proposed encryption scheme can be used to encrypt video information. And simulations performed on a video in AVI format have also verified the feasibility of the scheme for video encryption.  相似文献   

17.
Fully-phase image encryption is considered more secure as compared to an amplitude image encryption. In the present paper, an encryption scheme is proposed for double phase-images. The phase-images are bonded with random phase masks and then gyrator transformed. The two resulting images are then added and subtracted to give intermediate images which are bonded with a structured phase mask (SPM) based on devil’s vortex Fresnel lens (DVFL) in the frequency plane. Thereafter, the images are once again transformed using a gyrator transform (GT) to give the corresponding encrypted images. The use of a structured phase mask enhances the key space for encryption and also overcomes the problem of axis alignment associated with an optical set-up. The decryption process is the reverse of encryption. The validity of the proposed scheme is established from the computer simulation results using MATLAB 7.1 platform. The performance of the scheme is evaluated in terms of mean-squared-error (MSE) between the input-, and the decrypted images. In addition, the sensitivity to encryption keys such as SPM parameters, and transform angles of GT is investigated. The technique is likely to provide enhanced security in view of the increased number of encryption parameters. Robustness of the system against occlusion and noise attacks has also been investigated.  相似文献   

18.
An image encryption scheme has been presented by using two structured phase masks in the fractional Mellin transform (FrMT) plane of a system, employing a phase retrieval technique. Since FrMT is a non-linear integral transform, its use enhances the system security. We also add further security features by carrying out spatial filtering in the frequency domain by using a combination of two phase masks: a toroidal zone plate (TZP) and a radial Hilbert mask (RHM). These masks together increase the key space making the system more secure. The phase key used in decryption has been obtained by applying an iterative phase retrieval algorithm based on the fractional Fourier transform. The algorithm uses amplitude constraints of secret target image and the ciphertext (encrypted image) obtained from multiplication of fractional Mellin transformed arbitrary input image and the two phase masks (TZP and RHM). The proposed encryption scheme has been validated for a few grayscale images, by numerical simulations. The efficacy of the scheme has been evaluated by computing mean-squared-error (MSE) between the secret target image and the decrypted image. The sensitivity analysis of the decryption process to variations in various encryption parameters has also been carried out.  相似文献   

19.
The classical double random phase encoding technique (DRPE) is vulnerable to chosen ciphertext attacks, known-plaintext attacks and chosen-plaintext attacks for its linearity. In order to avoid the disadvantages originated from the linearity and symmetric, an improved method for multiple-image encryption based on nonlinear operations in Fourier domain is proposed. The random phase masks (RPMs) for encryption and additive keys which are determined by the original images and generated by the nonlinear operations in encryption process, are necessary for image decoding. As a result of the nonlinear operations, the increase in the number of keys, removal of linearity and high robustness could be achieved in this cryptosystem. Computer simulations are presented to demonstrate its good performance, and the security is analyzed as well.  相似文献   

20.
双随机相位图像加密的实值编码研究   总被引:7,自引:5,他引:2  
李榕  李萍 《光子学报》2005,34(6):952-955
提出了一种基于双随机相位的图像实值编码方法,该方法可应用于光学图像加密.要编码的纯相位图像分别在空间域和频域加入随机相位掩膜,其中在频域将编码范围扩大4倍,经过光学系统的变换,将生成的图像取实部作为编码图像.实值编码的图像利用与编码过程类似的方法进行解码,可以准确地重建原图像.该编译码方法简单,编码图像是一个近似随机噪声的实值图像,便于数字图像的传输与输出.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号