首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive intermediates play key roles for reaction mechanism elucidation. A suitable tool for identifying the key intermediates is crucial and highly desirable. In this study, surface desorption dielectric‐barrier discharge ionization (reactive SDDBDI) was developed for characterization of the reactive intermediates. In reactive SDDBDI, the plasma is doped with a reagent before the plasma ions are directed at a cover slip surface bearing another analyte. Different from SDDBDI, reactive SDDBDI can be used both as an ambient ionization source and as a means to produce reagent ions for ambient ion/molecule reactions. The online derivation of 4‐aminophenol with trifluoroacetic anhydride demonstrated that reactive SDDBDI can be used for chemical analysis where improved specificity or sensitivity is required. The utility of this approach for real‐time detection of reactive intermediate was demonstrated by the Schiff‐base and Eberlin reactions. The formed intermediates and products could be readily detected and identified by tandem mass spectrometry. These results indicate that reactive SDDBDI can be used to generate reagent ions that undergo ion/molecule reactions in the open air with an analyte at condensed phase on a surface. Reactive SDDBDI has high‐efficiency ion transmission and high MS sensitivity. It is thus a potential tool to perform ambient ion/molecule reactions and detect reactive intermediates.  相似文献   

2.
丁薛璐  段忆翔 《中国科学:化学》2014,(5):24-25,674,679
近年来,常压开源质谱解吸/离子化(ambient desorption/ionization mass spectrometry)技术的开发促进了质谱分析的蓬勃发展.作为常压开源质谱技术的一大重要分支,基于等离子体的常压质谱解吸/离子化技术因无需样品预处理、无溶剂化过程、高灵敏度、高通量、能实时在线检测样品等优点,受到了学术界及仪器制造、化学和生物分析等相关产业界的广泛关注.本文从离子源的种类、原理及应用等角度对目前我国在开源质谱领域中自主研发的基于等离子体的常压离子源的研究进展进行了总结,并对此类等离子体常压离子源的发展进行了展望,重点涉及微波等离子体源、常压微辉光放电等离子体源和解吸电晕束离子源.  相似文献   

3.
A recently developed atmospheric pressure ionization source, a distributed plasma ionization source (DPIS), was characterized and compared to commonly used atmospheric pressure ionization sources with both mass spectrometry (MS) and ion mobility spectrometry (IMS). The source consisted of two electrodes of different sizes separated by a thin dielectric. Application of a high RF voltage across the electrodes generated plasma in air yielding both positive and negative ions. These reactant ions subsequently ionized the analyte vapors. The reactant ions generated were similar to those created in a conventional point-to-plane corona discharge ion source. The positive reactant ions generated by the source were mass identified as being solvated protons of general formula (H2O)nH+ with (H2O)2H+ as the most abundant reactant ion. The negative reactant ions produced were mass identified primarily as CO3, NO3, NO2, O3 and O2 of various relative intensities. The predominant ion and relative ion ratios varied depending upon source construction and supporting gas flow rates. A few compounds including drugs, explosives and amines were selected to evaluate the new ionization source. The source was operated continuously for 3 months and although surface deterioration was observed visually, the source continued to produce ions at a rate similar that of the initial conditions.  相似文献   

4.
We provide experimental and theoretical evidence that the primary ionization process in the dopant-assisted varieties of the atmospheric pressure ionization methods atmospheric pressure photoionization and atmospheric pressure laser ionization in typical liquid chromatography–mass spectrometry settings is—as suggested in the literature—dopant radical cation formation. However, instead of direct dopant radical cation–analyte interaction—the broadly accepted subsequent step in the reaction cascade leading to protonated analyte molecules—rapid thermal equilibration with ion source background water or liquid chromatography solvents through dopant ion–molecule cluster formation occurs. Fast intracluster chemistry then leads to almost instantaneous proton-bound water/solvent cluster generation. These clusters interact either directly with analytes by ligand switching or association reactions, respectively, or further downstream in the intermediate-pressure regions in the ion transfer stages of the mass spectrometer via electrical-field-driven collisional decomposition reactions finally leading to the predominantly observed bare protonated analyte molecules [M?+?H]+.  相似文献   

5.
Plasma-based desorption/ionization sources are an important ionization technique for ambient surface analysis mass spectrometry. In this paper, we compare and contrast three competing plasma based desorption/ionization sources: a radio-frequency (rf) plasma needle, a dielectric barrier plasma jet, and a low-temperature plasma probe. The ambient composition of the three sources and their effectiveness at analyzing a range of pharmaceuticals and polymers were assessed. Results show that the background mass spectrum of each source was dominated by air species, with the rf needle producing a richer ion spectrum consisting mainly of ionized water clusters. It was also seen that each source produced different ion fragments of the analytes under investigation: this is thought to be due to different substrate heating, different ion transport mechanisms, and different electric field orientations. The rf needle was found to fragment the analytes least and as a result it was able to detect larger polymer ions than the other sources. Figure
?  相似文献   

6.
A kinetic model is developed for the dynamic events occurring within an atmospheric sampling glow discharge that affect its performance as an ion source for analytical mass spectrometry. The differential equations incorporate secondary electron generation and thermalization, reagent and analyte ion formation via electron capture and ion-molecule reactions, ion loss via recombination processes, diffusion, and ion-molecule reactions with matrix components, and the sampling and pumping parameters of the source. Because the ion source has a flow-through configuration, the number densities of selected species can be estimated by applying the steady-state assumption. However, understanding of its operation is aided by knowledge of the dynamic behavior, so numerical methods are applied to examine the time dependence of those species as well. As in other plasma ionization sources, the ionization efficiency is essentially determined by the ratio of the relevant ion formation and recombination rates. Although thermal electron and positive reagent ion number densities are comparable, the electron capture/ion-molecule reaction rate coefficient ratio is normally quite large and the ion-electron recombination rate coefficient is about an order of magnitude greater than that for ion-ion recombination. Consequently, the efficiency for negative analyte ion formation via electron capture is generally superior to that for positive analyte ion generation via ion-molecule reaction. However, the efficiency for positive analyte ion formation should be equal to or better than that for negative analyte ions when both ionization processes occur via ion-molecule reaction processes (with comparable rate coefficients), since the negative reagent ion density is considerably less than that for positive reagent ions. Furthermore, the particularly high number densities of thermal electrons and reagent ions leads to a large dynamic range of linear response for the source. Simulation results also suggest that analyte ion number densities might be enhanced by modification of the standard physical and operating parameters of the source.  相似文献   

7.
Sonic spray ionization is shown to create a supersonic cloud of charged droplets able to promote efficient desorption and ionization of drugs directly from the surfaces of commercial drug tablets at ambient conditions. Compared with desorption electrospray ionization (DESI), desorption sonic spray ionization (DeSSI) is advantageous since it uses neither heating nor high voltages at the spray capillary. DeSSI therefore provides a more friendly environment in which to perform ambient mass spectrometry (MS). DeSSI-MS is herein evaluated for the analysis of drug tablets, and found to be, in general, as sensitive as DESI-MS. The (high) voltage-free DeSSI method provides, however, cleaner mass spectra with less abundant solvent cluster ions and with enough abundant analyte signal for tandem mass spectrometry (MS/MS). These features may therefore facilitate the DeSSI-MS detection of low molar mass components or impurities, or both. The higher-velocity supersonic DeSSI spray also facilitates matrix penetration thus providing more homogenous sampling and longer lasting ion signals.  相似文献   

8.
It is demonstrated that spatially resolved mass selected analysis using atmospheric pressure laser ionization mass spectrometry (APLI MS) represents a new powerful tool for mechanistic studies of ion-molecule chemistry occurring within atmospheric pressure (AP) ion sources as well as for evaluation and optimization of ion source performance. A focused low-energy UV laser beam is positioned computer controlled orthogonally on a two-dimensional grid in the ion source enclosure. Resonance enhanced multiphoton ionization (REMPI) of selected analytes occurs only within the confined volume of the laser beam. Depending on the experimental conditions and the reactivity of the primary photo-generated ions, specific signal patterns become visible after data treatment, as visualized in, e.g., contour or pseudo-color plots. The resulting spatial dependence of sensitivity is defined in this context as the distribution of ion acceptance (DIA) of the source/analyzer combination. This approach provides a much more detailed analysis of the diverse processes occurring in AP ion sources compared with conventional bulk signal response measurements.  相似文献   

9.
Glow discharge plasmas with helium–(0–16%) nitrogen mixed gas were investigated as an excitation source in optical emission spectrometry. The addition increases the sputtering rate as well as the discharge current, because nitrogen molecular ions, which act as primary ions for the cathode sputtering, are produced through Penning-type ionization collisions between helium metastables and nitrogen molecules. The intensity of a silver atomic line, Ag I 338.29 nm, is monotonically elevated along with the nitrogen partial pressure added. However, the intensities of silver ionic lines, such as Ag II 243.78 nm and Ag II 224.36 nm, gave different dependence from the intensity of the atomic line: Their intensities had maximum values at a nitrogen pressure of 30 Pa when the helium pressure and the discharge voltage were kept at 2000 Pa and 1300 V. This effect is principally because the excitations of these ionic lines are caused by collisions of the second kind with helium excited species such as helium metastables and helium ion, which are quenched through collisions with nitrogen molecules added to the helium plasma. The sputtering rate could be controlled by adding small amounts of nitrogen to the helium plasma, whereas the cathode sputtering hardly occurs in the pure helium plasma.  相似文献   

10.
A possible reason for the high intensity of the ion emission in the spectrum excitation in a plasma jet generated by a two-jet argon arc plasmatron was considered. The injection of a test substance as an air–solid suspension between the plasma jets (i.e., mixing of a hot plasma with a cold directional carrier-gas flow) created a radial temperature gradient and induced an intense argon influx from the dense plasma jets to the cold axial plasma zone used for analytical purposes. Favorable conditions were thus created for the analyte Penning impact ionization with argon ions. This was confirmed by the existence of a correlation between an increase in the intensity of ion lines with the carrier-gas flow rate (cooling rate) and the total energy of ionization and excitation of an element. It was shown that charge transfer from the argon ion to the analyte occurred only in the case when the total energy of the element was lower than 16 eV, i.e., lower than the ionization energy of argon plus its kinetic energy.  相似文献   

11.
An atmospheric pressure microplasma ionization source based on a dielectric barrier discharge with a helium plasma cone outside the electrode region has been developed for liquid chromatography/mass spectrometry and as ionization source for ion mobility spectrometry. It turned out that dielectric barrier discharge ionization could be regarded as a soft ionization technique characterized by only minor fragmentation similar to atmospheric pressure chemical ionization (APCI). Mainly protonated molecules were detected. In order to characterize the soft ionization mechanism spatially resolved optical emission spectrometry (OES) measurements were performed on plasma jets burning either in He or in Ar. Besides to spatial intensity distributions of noble gas spectral lines, in both cases a special attention was paid to lines of N2+ and N2. The obtained mapping of the plasma jet shows very different number density distributions of relevant excited species. In the case of helium plasma jet, strong N2+ lines were observed. In contrast to that, the intensities of N2 lines in Ar were below the present detection limit. The positions of N2+ and N2 distribution maxima in helium indicate the regions where the highest efficiency of the water ionization and the protonation process is expected.  相似文献   

12.
Desorption electrospray ionization (DESI) mass spectrometry was evaluated for the characterization of glycerophospholipid standards, including glycerophosphocholine (GPCho), glycerophosphoglycerol (GPGro), glycerophosphoethanolamine (GPEtn), glycerophosphoserine (GPSer), glycerophosphoinositol (GPIns), cardiolipin (CL), and sphingolipid standards, including sulfatides (ST) and sphingomyelin (SM). Of specific interest were the effects of surface and solvent composition on signal stability and intensity, along with the ions observed in the full scan mode and the fragmentations seen upon collisional activation for each of the above classes. These experiments were performed without the addition of matrix compounds to the sample and were conducted in the free ambient environment at atmospheric pressure. The compounds GPSer, GPGro, GPIns, ST, and CL were best analyzed in the negative ion mode while PE was ionized efficiently in both positive and negative ion modes. SM and GPCho, which typically generate more abundant ions in the positive ion mode, could be analyzed in the negative ion mode by the addition of anionic reagents such as acetate to the spray solvent. Full scan DESI mass spectra and tandem (MS/MS) spectra for this representative set of physiological phospho/sphingolipids are presented. Similarities with other ionization methods in terms of fragmentation behavior were strong, although ambient ionization of untreated samples is only available with DESI. The effect of surface and solvent properties on signal intensity and stability were determined by depositing standard compounds on several different surfaces and analyzing with various proportions of methanol in the aqueous spray. Analysis was extended to complex mixtures of phospholipids and sphingolipids by examining the total lipid extract of porcine brain and by direct analysis of rat brain cryotome sections. These types of mixture analyses and molecular imaging studies are likely to represent major areas of application of DESI.  相似文献   

13.
张四纯  张新荣 《中国科学:化学》2014,(5):32-34,683,686
敞开式离子化质谱可对表面样品进行直接快速分析而受到关注,成为质谱分析的热点研究方向.介质阻挡放电离子源是一种基于等离子体放电机理的敞开式离子源,近年来得到了较快的发展.本文着重介绍该离子源的基本原理、性能特征以及应用进展,并对其发展趋势进行了展望.  相似文献   

14.
The development of a new configuration of chemical ionization (CI)‐based ion source is presented. The ambient air containing the gaseous sample is sniffed into an enclosed ionization chamber which is of sub‐ambient pressure, and is subsequently mixed with metastable species in front of the ion inlet of the mass spectrometer. Metastable helium atoms (He*) are used in this study as the primary ionizing agents and are generated from a dielectric barrier discharge (DBD) source. The DBD is powered by an AC high‐voltage supply and the configuration of the electrodes is in such a way that the generated plasma is confined within the discharge tube and is not extended into the ionization chamber. The construction of the ion source is simple, and volatile compounds released from the bulky sample can also be analyzed directly by approaching the sample to the sampling nozzle. When combined with heated nitrogen or other desorption methods, its application can also be extended to non‐volatile compounds, and the consumption for helium can be kept minimum solely for maintaining the stable discharge and gas phase ionization. Applications to non‐proximate sample analysis, direct determination of active ingredients in drug tablets and the detection of trace explosive such as hexamethylene triperoxide diamine are demonstrated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Recently discovered ionization methods for use in mass spectrometry (MS), are widely applicable to biological materials, robust, and easy to automate. Among these, matrix assisted ionization vacuum (MAIV) is astonishing in that ionization of low and high-mass compounds are converted to gas-phase ions with charge states similar to electrospray ionization simply by exposing a matrix:analyte mixture to the vacuum of a mass spectrometer. Using the matrix compound, 3-nitrobenzonitrile, abundant ions are produced at room temperature without the need of high voltage or a laser. Here we discuss chemical analyses advances using MAIV combined with ion mobility spectrometry (IMS) real time separation, high resolution MS, and mass selected and non-mass selected MS/MS providing rapid analyte characterization. Drugs, their metabolites, lipids, peptides, and proteins can be ionized simultaneously from a variety of different biological matrixes such as urine, plasma, whole blood, and tissue. These complex mixtures are best characterized using a separation step, which is obtained nearly instantaneously with IMS, and together with direct ionization and MS or MS/MS provides a fast analysis method that has considerable potential for non-targeted clinical analyses.  相似文献   

16.
We report a miniaturized excitation source for soft ionization of molecules based on a dielectric barrier discharge. An atmospheric plasma is established at the end of a 500 μm diameter capillary using He as buffer gas. The plasma jet which comes out of the capillary is dependent on the gas flow rate. The mechanism of the production of N2+ outside the capillary, which is relevant for the protonation of molecules and sustains the production of primary ions, is investigated by spatially resolved spectroscopic measurements throughout the plasma. Possible application of such miniaturized plasmas is the ionization of gaseous compounds under atmospheric pressure as an alternative to traditional APCI (atmospheric pressure chemical ionization). The miniaturized plasma was applied as ionization source for ion mobility spectrometry where the common sources are radioactive, thus limiting the place of installation. First measurements of gaseous compounds with such a plasma ion mobility spectrometer with promising results showed detection limits comparable or even better than those obtained using common radioactive ionization sources.  相似文献   

17.
Ambient ionization is the new revolution in mass spectrometry (MS). A microwave plasma produced by a microwave plasma torch (MPT) at atmospheric pressure was directly used for ambient mass spectrometric analysis. H3O+ and NH4+ and their water clusters from the background are formed and create protonated molecules and ammoniated molecules of the analytes. In the full‐scan mass spectra, both the quasi‐molecular ions of the analytes and their characteristic ionic fragments are obtained and provide evidence of the analyte. The successful detection of active compounds in both medicine and garlic proves that MPT has the efficient desorption/ionization capability to analyze solid samples. The obtained decay curve of nicotine in exhaled breath indicates that MPT‐MS is a useful tool for monitoring gas samples in real time. These results showed that the MPT, with the advantages of stable plasma, minimal optimization, easy, solvent‐free operation, and no pretreatment, is another potential technique for ambient MS. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A new ion source based on dielectric barrier discharge was developed as an alternative ionization source for ambient mass spectrometry. The dielectric barrier discharge ionization source, termed as DBDI herein, was composed of a copper sheet electrode, a discharge electrode, and a piece of glass slide in between as dielectric barrier as well as sample plate. Stable low-temperature plasma was formed between the tip of the discharge electrode and the surface of glass slide when an alternating voltage was applied between the electrodes. Analytes deposited on the surface of the glass slide were desorbed and ionized by the plasma and the ions were introduced to the mass spectrometer for mass analysis. The capability of this new ambient ion source was demonstrated with the analysis of 20 amino acids, which were deposited on the glass slide separately. Protonated molecular ions of [M + H](+) were observed for all the amino acids except for L-arginine. This ion source was also used for a rapid discrimination of L-valine, L-proline, L-serine and L-alanine from their mixture. The limit of detection was 3.5 pmol for L-alanine using single-ion-monitoring (SIM). Relative standard deviation (RSD) was 5.78% for 17.5 nmol of L-alanine (n = 5). With the advantages of small size, simple configuration and ease operation at ambient conditions, the dielectric barrier discharge ion source would potentially be coupled to portable mass spectrometers.  相似文献   

19.
Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last 9 years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification because of the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet.
Figure
?  相似文献   

20.
Traditional matrix does not allow matrix-assisted laser desorption/ionization mass spectrometry(MALDI MS) to analyze volatile compounds,because volatile analytes may vaporize during the sample preparation process or in the high vacuum circumstance of ion source.Herein,we reported a Co and N doped porous carbon material(Co-NC) which were synthesized by pyrolysis of a Schiff base coordination compound.Co-NC could simultaneously act as adsorbent of volatile compounds and as matrix of MALDI MS,to provide the capability of MALDI MS to analyze volatile compounds.As adsorbent,Co-NC could stro ngly adsorb and enrich the volatile compounds in perfume and herbs,and hold them even in the high vacuum circumstance.On the other hand,Co-NC could absorb the energy of the laser,and then transfer the energy to the analyte for desorption and ionization of analyte in both negative and positive ionization modes.Additionally,the background interferences were avoided in the low-mass region(<500 Da) when using Co-NC as matrix,overcoming the challenges of MALDI MS analysis of small molecule compounds.In summary,Co-NC as matrix tremendously extended the application of MALDI MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号