首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a powerful and sensitive surface analytical technique for the determination of concentration and distribution of trace metals within biological systems at micrometer spatial resolution. LA-ICP-MS allows easy quantification procedures if suitable standard references materials (SRM) are available. In this work a new SRM-free approach of solution-based calibration method in LA-ICP-MS for element quantification in hair is described. A dual argon flow of the carrier gas and nebulizer gas is used. A dry aerosol produced by laser ablation (LA) of biological sample and a desolvated aerosol generated by pneumatic nebulization (PN) of standard solutions are carried by two different flows of argon as carrier or nebulizer gas, respectively and introduced separately in the injector tube of a special ICP torch, through two separated apertures. Both argon flows are mixed directly in the ICP torch. External calibration via defined standard solutions before analysis of single hair was employed as calibration strategy. A correction factor, calculated using hair with known analyte concentration (measured by ICP-MS), is applied to correct the different elemental sensitivities of ICP-MS and LA-ICP-MS. Calibration curves are obtained by plotting the ratio of analyte ion M+/34S+ ion intensities measured using LA-ICP-MS in dependence of analyte concentration in calibration solutions. Matrix-matched on-line calibration in LA-ICP-MS is carried out by ablating of human hair strands (mounted on a sticky tape in the LA chamber) using a focused laser beam in parallel with conventional nebulization of calibration solutions. Calibrations curves of Li, Na, Mg, Al, K, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, Sr, Mo, Ag, Cd, I, Hg, Pb, Tl, Bi and U are presented. The linear correlation coefficients (R) of calibration curves for analytes were typically between 0.97 and 0.999. The limits of detection (LODs) of Li, V, Mn, Ni, Co, Cu, Sr, Mo, Ag, Ba, Cd, I, Hg, Pb, Bi and U in a single hair strand were in the range of 0.001-0.90 μg g−1, whereas those of Cr and Zn were 3.4 and 5.1 μg g−1, respectively. The proposed quantification strategy using on-line solution-based calibration in LA-ICP-MS was applied for biomonitoring (the spatial resolved distribution analysis) of essential and toxic metals and iodine in human hair and mouse hair.  相似文献   

2.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for quantitative imaging of toxic and essential elements in thin sections (thickness of 30 or 40 μm) of tobacco plant tissues. Two-dimensional images of Mg, Fe, Mn, Zn, Cu, Cd, Rh, Pt and Pb in leaves, shoots and roots of tobacco were produced. Sections of the plant tissues (fixed onto glass slides) were scanned by a focused beam of a Nd:YAG laser in a laser ablation chamber. The ablated material was transported with argon as carrier gas to the ICP ion source at a quadrupole ICP-MS instrument. Ion intensities of the investigated elements were measured together with 13C+, 33S+ and 34S+ within the entire plant tissue section. Matrix matching standards (prepared using powder of dried tobacco leaves) were used to constitute calibration curves, whereas the regression coefficient of the attained calibration curves was typically 0.99. The variability of LA-ICP-MS process, sample heterogeneity and water content in the sample were corrected by using 13C+ as internal standard. Quantitative imaging of the selected elements revealed their inhomogeneous distribution in leaves, shoots and roots.  相似文献   

3.
Hui-Fang Hsieh 《Talanta》2009,79(2):183-240
This work describes a simple procedure for blood lead level determination. The proposed method requires little sample pretreatment and subsequent direct analysis of a dried blood spot on a filter membrane using laser ablation coupled with inductively coupled plasma mass spectrometry (LA-ICP-MS). In general, LA-ICP-MS studies are somewhat limited by the lack of matrix-matched standards for calibration purposes. Here we describe aqueous standard calibration and matrix-matched calibration methods. This method was validated by analysis of the reference materials. With the matrix-matched calibration method, the recovery ranged from 97.8% to 112.8%, while the aqueous standard calibration method ranged 90.4% to 122.4%. The lower detection limit was estimated as 0.1 ng mL−1. The determination precision, expressed as the relative standard deviation (RSD), was not worse than 10% for all results. A sample throughput of approximately 5 min per sample made it possible to rapidly screen a large number of samples.  相似文献   

4.
This paper describes an analytical method for trace element determination in bone tissues. The study of the influence of the bone matrix showed that the addition of 25% ground bone to graphite powder with introduced impurities did not affect the analytical signal of elements in the spectral excitation in a two-jet plasma. On basis of these investigations a method for direct multielement analysis of bone tissues was suggested. The sample preparation procedure consisted in mixing powdered bone (particle size 30 μm or less) with a spectroscopic buffer (graphite powder plus NaCl) in ratio 1:3 or to a greater extent depending on the analyte concentration. Reference samples based on graphite powder were used for construction of calibration curves. The NaCl concentration in analyzed and calibration samples was 15 wt%. The effect of particle size was revealed from the determination of Ba, Sr, and Mg. To eliminate this effect, treatment of the samples with nitric acid was proposed. The validation of the technique was confirmed by comparison of the analysis results of a bone sample with those obtained by inductively coupled plasma atomic emission spectrometry after wet acid digestion. The limits of detection estimated for 20 elements were the following (μg g-1): 0.1 (Ag), 1.0 (Al), 1.0 (Ba), 0.1 (Be), 1.2 (Bi), 0.4 (Cd), 1.0 (Co), 0.2 (Cu), 0.6 (Cr), 1.9 (In), 2 (Fe), 0.3 (Ga), 0.4 (Mn), 0.4 (Mo), 0.7 (Ni), 1.0 (Pb), 0.7 (Sn), 0.8 (Tl), 5 (Sr), 1.0 (Zn).  相似文献   

5.
The use of reference solutions dispersed on filter paper discs is proposed for the first time as an external calibration strategy for matrix matching and determination of As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, V and Zn in plants by laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS). The procedure is based on the use of filter paper discs as support for aqueous reference solutions, which are further evaporated, resulting in solid standards with concentrations up to 250 μg g−1 of each element. The use of filter paper for calibration is proposed as matrix matched standards due to the similarities of this material with botanical samples, regarding to carbon concentration and its distribution through both matrices. These characteristics allowed the use of 13C as internal standard (IS) during the analysis by LA-ICP-MS. In this way, parameters as analyte signal normalization with 13C, carrier gas flow rate, laser energy, spot size, and calibration range were monitored. The calibration procedure using solution deposition on filter paper discs resulted in precision improvement when 13C was used as IS. The method precision was calculated by the analysis of a certified reference material (CRM) of botanical matrix, considering the RSD obtained for 5 line scans and was lower than 20%. Accuracy of LA-ICP-MS determinations were evaluated by analysis of four CRM pellets of botanical composition, as well as by comparison with results obtained by ICP-MS using solution nebulization after microwave assisted digestion. Plant samples of unknown elemental composition were analyzed by the proposed LA method and good agreement were obtained with results of solution analysis. Limits of detection (LOD) established for LA-ICP-MS were obtained by the ablation of 10 lines on the filter paper disc containing 40 μL of 5% HNO3 (v v−1) as calibration blank. Values ranged from 0.05 to 0.81  μg g−1. Overall, the use of filter paper as support for dried aqueous standards showed to be a useful strategy for calibration and plant analysis by LA-ICP-MS.  相似文献   

6.
We have developed a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method to directly determine the concentrations of trace metals in high-purity powdery silicon carbide (SiC) samples. The sample preparation procedure is simple and rapid. The sample was formed into pellets using no binders and heated at 1000 °C for 2 h. The operation parameters for LA and ICP-MS were optimized to achieve a table signal intensity and high sensitivity. National Institute of Standards and Technology Standard Reference Materials glasses were chosen as calibration standards, with 29Si chosen as the internal standard. The relative sensitivity factor obtained from the glass matrix was used to calculate the concentrations of analytes in the SiC ceramic samples. The regression correlation coefficients of the calibration curves for elements with internal standard correction ranged from 0.9981 to 0.9999, which are better than those obtained with an external standard correction method only. The relative standard deviation of the measured trace element concentrations was less than 5%. The limits of detection were 0.02, 0.08, 0.04, 0.005, 0.01, 0.02, 0.004, 0.07, and 0.006 mg kg 1 for B, Ti, Cr, Mn, Fe, Ni, Co, Cu, and Sr, respectively. The method was applied to analyze SiC samples with two different particle sizes. The analysis showed good agreement with the results of inductively coupled plasma optical emission spectrometry. The reliability of the proposed method was confirmed by determining the contents of B, Ti, Cr, Mn, Fe, Ni, and Cu in BAM-S003.  相似文献   

7.
The determination of trace elements in pure quartz glass samples has been performed by coupling an ICP quadrupole mass spectrometer with the LINA-Spark-Atomizer, an IR laser ablation system dedicated to direct bulk and surface analysis of solid samples. Linear calibration curves were obtained for nine elements (Na, Al, Ca, Ti, Cr, Mn, Zr, Ba, and Pb) in the ng g–1 range with detection limits of less than 10 ng g–1 for Ca, Cr, Mn, Zr, Ba, and Pb and in the range of 120–220 ng g–1 for Na, Al, and Ti. The distance between the laser focal point and the sample surface has a significant influence on signal intensity and precision, both of which can be improved by a factor of approximately two by focusing the laser 15 mm behind the sample surface. Aerosol moistening reduced the standard deviation of the signal intensity by a factor of 2–4. Signal instability, which resulted from different ablation rates or variations in the transmission of the mass spectrometer, were compensated by use of the simultaneously measured SiAr+ ion as an internal standard. Under these conditions precision was usually better than 5% RSD. The results were compared with those obtained by use of a commercial LA–ICP–MS system. With this instrumentation linear calibration curves were achieved for three elements only (Al, Ti, and Pb), showing that LA–ICP–MS is less appropriate for bulk analysis in the ng g–1 range.  相似文献   

8.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for the quantitative imaging of nutrient elements (such as K, Mg, Mn, Cu, P, S and B) in the leaves of Elsholtzia splendens. The plant leaves were scanned directly with a focused Nd:YAG laser in the laser ablation chamber. The ablated material was transported with argon as carrier gas to a quadrupole-based ICP-MS (ICP-QMS), and the ion intensities of 39K+, 24Mg+, 55Mn+, 63Cu+, 31P+, 34S+ and 11B+ were measured by ICP-QMS to study the distribution of the elements of interest. The imaging technique using LA-ICP-MS on plant leaves does not require any sample preparation. Carbon (13C+) was used as an internal standard element to compensate for the difference in the amount of material ablated. Additional experiments were performed in order to study the influence of the water content of the analyzed leaves on the intensity signal of the analyte. For quantification purposes, standard reference material (NIST SRM 1515 Apple Leaves) was selected and doped with standard solutions of the analytes within the concentration range of 0.1-2000 mg L−1. The synthetic laboratory standards together with the samples were measured by LA-ICP-MS. The shape and structure of the leaves was clearly given by LA-ICP-MS imaging of all the elements measured. The elemental distribution varied according to the element, but with a high content in the veins for all the elements investigated. Specifically, Cu was located uniformly in the mesophyll with a slightly higher concentration in the main vein. High ion intensity was measured for S with a high amount of this element in the veins similar to the images of the metals, whereas most of the B was detected at the tip of the leaf. With synthetic laboratory standard calibration, the concentrations of elements in the leaves measured by LA-ICP-MS were between 20 μg g−1 for Cu and 14,000 μg g−1 for K.  相似文献   

9.
Application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) as a method for identification of arsenic in a single hair strand was investigated. Using a single point ablation method detectability of 75As and other two elements (208Pb and 64Zn) were evaluated. Arsenic (75As) signal is improved with enhanced laser ablation conditions. For the arsenic determination in hair single spots or single linear scans with enhanced laser ablation conditions described in the paper are satisfactory although  800 μm linear scans may be preferable. Arsenic levels in a single strand of hair from individuals who were chronically exposed to arsenic contaminated drinking water from a village in the Atacama Desert in northern Chile were determined by LA-ICP-MS. These results were satisfactorily correlated with total As concentration previously measured by hydride generation (HG)-ICP-MS. The sample throughput is high and it takes  3 min per each hair sample including mounting, focusing and analysis. LA-ICP-MS method can be used for the rapid identification and screening of toxic and nutritionally important elements in hair.  相似文献   

10.
The determination of trace elements in pure quartz glass samples has been performed by coupling an ICP quadrupole mass spectrometer with the LINA-Spark-Atomizer, an IR laser ablation system dedicated to direct bulk and surface analysis of solid samples. Linear calibration curves were obtained for nine elements (Na, Al, Ca, Ti, Cr, Mn, Zr, Ba, and Pb) in the ng g(-1) range with detection limits of less than 10 ng g(-1) for Ca, Cr, Mn, Zr, Ba, and Pb and in the range of 120-220 ng g(-1) for Na, Al, and Ti. The distance between the laser focal point and the sample surface has a significant influence on signal intensity and precision, both of which can be improved by a factor of approximately two by focusing the laser 15 mm behind the sample surface. Aerosol moistening reduced the standard deviation of the signal intensity by a factor of 2-4. Signal instability, which resulted from different ablation rates or variations in the transmission of the mass spectrometer, were compensated by use of the simultaneously measured SiAr+ ion as an internal standard. Under these conditions precision was usually better than 5% RSD. The results were compared with those obtained by use of a commercial LA-ICP-MS system. With this instrumentation linear calibration curves were achieved for three elements only (Al, Ti, and Pb), showing that LA-ICP-MS is less appropriate for bulk analysis in the ng g(-1) range.  相似文献   

11.
Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have been applied as the most important inorganic mass spectrometric techniques having multielemental capability for the characterization of solid samples in materials science. ICP-MS is used for the sensitive determination of trace and ultratrace elements in digested solutions of solid samples or of process chemicals (ultrapure water, acids and organic solutions) for the semiconductor industry with detection limits down to sub-picogram per liter levels. Whereas ICP-MS on solid samples (e.g. high-purity ceramics) sometimes requires time-consuming sample preparation for its application in materials science, and the risk of contamination is a serious drawback, a fast, direct determination of trace elements in solid materials without any sample preparation by LA-ICP-MS is possible. The detection limits for the direct analysis of solid samples by LA-ICP-MS have been determined for many elements down to the nanogram per gram range. A deterioration of detection limits was observed for elements where interferences with polyatomic ions occur. The inherent interference problem can often be solved by applying a double-focusing sector field mass spectrometer at higher mass resolution or by collision-induced reactions of polyatomic ions with a collision gas using an ICP-MS fitted with collision cell. The main problem of LA-ICP-MS is quantification if no suitable standard reference materials with a similar matrix composition are available. The calibration problem in LA-ICP-MS can be solved using on-line solution-based calibration, and different procedures, such as external calibration and standard addition, have been discussed with respect to their application in materials science. The application of isotope dilution in solution-based calibration for trace metal determination in small amounts of noble metals has been developed as a new calibration strategy. This review discusses new analytical developments and possible applications of ICP-MS and LA-ICP-MS for the quantitative determination of trace elements and in surface analysis for materials science.  相似文献   

12.
Results of the use of a double-focusing, magnetic sector inductively coupled plasma mass spectrometer (ICP-MS) with ultraviolet (UV) laser ablation (LA) are presented for the bulk analysis of rare earth elements (REEs) in rocks fused with Li2B4O7. The sample preparation procedure used a sample to flux weight ratio of 1 : 7, and was identical with a procedure routinely used for X-ray fluorescence (XRF) analyses of major and minor elements in geological materials. Calibration was based on a total of 18 international standard reference materials (SRMs), and Ba was used as an internal standard element for all REEs. The calibration curves were constructed using a weighted regression model. The use of internal standard, without exception, improved the correlation coefficients significantly. The 3σ detection limits were established by a blank sample of SiO2 spiked with Ba, and were in the range from 0.003 μg g–1 (159Tb) to 0.051 μg g–1 (140Ce). The use of a large set of SRMs for calibration gave a good basis for the evaluation of analytical quality, and extensive data for calculated analytical uncertainty are presented. Instrumental precision and the repeatability of the method were studied separately, and no significant difference in these two sets of parameters were found, indicating that the spread of results predominantly was connected to the instrumental measurements. Repeated ablations on the surface of a disk did not influence subsequent measurements with XRF, showing that the fused disks can be stored for future use in XRF and/or LA-ICP-MS analysis. Received: 12 February 1998 / Revised: 6 April 1998 / Accepted: 17 April 1998  相似文献   

13.
An ICP-MS method for determination of 60 elements in plant samples is proposed based on optimization of digestion, recommending use of HF besides HNO3 and H2O2 and calibration procedures, using CRMs for construction of calibration curves. Adequate choice of analytical isotopes and various measurement conditions (cold plasma for the determination of Al, Ba, Ca, Fe, K, Mg, Mn, Na, Si and Sr and DRC mode for determination of Ag, As, Ni, Pd, Pt, Se and V) as well as introduction of appropriate corrections lead to determination of as large number of elements with quadropole ICP-MS as with the more expensive SF-ICP-MS. Two measurements are performed: cold plasma and standard/DRC mode. The analytical characteristics of the method are demonstrated by analysis of five CRMs and the agreement of the experimental results with the certified/information/literature values is very good. Detection limits are low enough to permit the determination of all elements but platinum metals at background level. The applicability of the method is demonstrated by analysis of Taraxacum officinale (dandelion) samples collected from regions with different anthropogenic influence. The results indicate high degree of pollution round the Pb-Zn smelter with As, Cd, Cu, Ni, Pb and Zn and increased concentrations of B, Be, Bi, Hg, In, Mn, Sb, Se, Sn, Ti, Tl, V and Zr. The dandelion sample, collected along a highway has increased concentrations of traffic released elements: Pt, Pd, Rh, Ce, La, Pb as well as Cu, Zn, Ba and Rb.  相似文献   

14.
This paper describes a simple procedure for the direct analysis and determination of multiple elements in dried blood samples on a filter membrane using laser ablation coupled with inductively coupled plasma mass spectrometry (LA-ICP-MS). With this technique, we simultaneously quantified 13 elements in whole blood: Be, Mn, Co, Ni, Tl, Bi, Sb, Pb, Cu, Zn, Ba, Mg, and Cd. The measured accuracies was in agreement with the Seronorm CRM certified values, except for Mn, Zn, Ba and Cd, which presented absolute differences higher than the expanded uncertainty for these elements. The within-run precision was less than 5.7% (relative standard deviation, RSD), except for the analyses of Be, and Mn (8.6% and 11.1%, respectively). The reproducibility (between-run precision) was calculated in terms of the RSD obtained for 12 analyses (i.e., four replicates of each sample in three analytical runs). Apart from Be, Mn, and Zn, the reproducibilities of all the elements listed above ranged between 4.0% and 8.5%. In contrast, for Cd, the concentration obtained was significantly different from the certified value; analyses of this element exhibited low reproducibility. Applying the matrix-matched calibration method, the accuracy for Cd measured was in agreement with both SRM966 and BCR 635; thus, matrix-matched calibration is a practical means of overcoming matrix-enhancement effects for the quantification of Cd. Sample throughput (ca. 5 min per sample) made it possible to rapidly screen a larger number of samples relative to other techniques that require time-consuming sample preparation steps (e.g., removal of a portion of the solid sample or digestion).  相似文献   

15.
The electrochemical behaviour of the pesticide metam (MT) at a glassy carbon working electrode (GCE) and at a hanging mercury drop electrode (HMDE) was investigated. Different voltammetric techniques, including cyclic voltammetry (CV) and square wave voltammetry (SWV), were used. An anodic peak (independent of pH) at +1.46 V vs AgCl/Ag was observed in MT aqueous solution using the GCE. SWV calibration curves were plotted under optimized conditions (pH 2.5 and frequency 50 Hz), which showed a linear response for 17–29 mg L−1. Electrochemical reduction was also explored, using the HMDE. A well defined cathodic peak was recorded at −0.72 V vs AgCl/Ag, dependent on pH. After optimizing the operating conditions (pH 10.1, frequency 150 Hz, potential deposition −0.20 V for 10 s), calibration curves was measured in the concentration range 2.5×10−1 to 1.0 mg L−1 using SWV. The electrochemical behaviour of this compound facilitated the development of a flow injection analysis (FIA) system with amperometric detection for the quantification of MT in commercial formulations and spiked water samples. An assessment of the optimal FIA conditions indicated that the best analytical results were obtained at a potential of +1.30 V, an injection volume of 207 μL and an overall flow rate of 2.4 ml min−1. Real samples were analysed via calibration curves over the concentration range 1.3×10−2 to 1.3 mg L−1. Recoveries from the real samples (spiked waters and commercial formulations) were between 97.4 and 105.5%. The precision of the proposed method was evaluated by assessing the relative standard deviation (RSD %) of ten consecutive determinations of one sample (1.0 mg L−1), and the value obtained was 1.5%.  相似文献   

16.
Hsieh HF  Chen YH  Wang CF 《Talanta》2011,85(2):983-990
This paper describes a simple method for simultaneous preconcentration and matrix reduction during the analysis of rare earth elements (REEs) in water samples through laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). From a systematic investigation of the co-precipitation of REEs using magnesium hydroxide, we optimized the effects of several parameters - the pH, the amount of magnesium, the shaking time, the efficiency of Ba removal, and the sample matrix - to ensure quantitative recoveries. We employed repetitive laser ablation to remove the dried-droplet samples from the filter medium and introduce them into the ICP-MS system for determinations of REEs. The enrichment factors ranged from 8 to 88. The detection limit, at an enrichment factor of 32, ranged from 0.03 to 0.20 pg mL−1. The relative standard deviations for the determination of REEs at a concentration of 1 ng mL−1 when processing 40 mL sample solution were 2.0-4.8%. We applied this method to the satisfactory determination of REEs in lake water and synthetic seawater samples.  相似文献   

17.
Teeth retain different elements at particular stages of life. Hence, the exposure over a selected time span may be characterized by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). A Nd:YAG laser with emission at 266?nm was coupled to a quadrupole ICP-MS for the quantitative study of historical human teeth for Sr and Ba, elements of anthropological significance. A calibration approach incorporating the experimentally derived k coefficient is reported. The coefficients were established based on the mean concentrations of the analytes determined by pneumatic nebulization ICP-MS using acid-digested calcium phosphate standards and the intensities recorded during laser ablation of corresponding standards as pellets. The k values were 0.54?±?0.05 (µg?g?1)?1 and 4.49?±?1.09 (µg?g?1)?1 for Sr and Ba, respectively. This calibration approach provided local quantitative data and demonstrated statistically significant differences in Sr concentrations in enamel and dentine.  相似文献   

18.
A homogenized 193 nm excimer laser with a flat-top beam profile was used to study the capabilities of LA-ICP-MS for ‘quasi’ non-destructive fingerprinting and sourcing of sapphires from different locations. Sapphires contain 97–99% of Al2O3 (corundum), with the remainder composed of several trace elements, which can be used to distinguish the origin of these gemstones. The ablation behavior of sapphires, as well as the minimum quantity of sample removal that is required to determine these trace elements, was investigated. The optimum ablation conditions were a fluency of 6 J cm−2, a crater diameter of 120 μm, and a laser repetition rate of 10 Hz. The optimum time for the ablation was determined to be 2 s, equivalent to 20 laser pulses. The mean sample removal was 60 nm per pulse (approx. 3 ng per pulse). This allowed satisfactory trace element determination, and was found to cause the minimum amount of damage, while allowing for the fingerprinting of sapphires. More than 40 isotopes were measured using different spatial resolutions (20–120 μm) and eight elements were reproducibly detected in 25 sapphire samples from five different locations. The reproducibility of the trace element distribution is limited by the heterogeneity of the sample. The mean of five or more replicate analyses per sample was used. Calibration was carried out using NIST 612 glass reference material as external standard. The linear dynamic range of the ICP-MS (nine orders of magnitude) allowed the use of Al, the major element in sapphire, as an internal standard. The limits of detection for most of the light elements were in the μg g−1 range and were better for heavier elements (mass >85), being in the 0.1 μg g−1 range. The accuracy of the determinations was demonstrated by comparison with XRF analyses of the same set of samples. Using the quantitative analyses obtained using LA-ICP-MS, natural sapphires from five different origins were statistically classified using ternary plots and principal multi-component analysis.  相似文献   

19.
An imaging mass spectrometric method using laser ablation inductively coupled plasma spectrometry (LA-ICP-MS) was developed to determine Cu, Zn, Cd, Hg and Pb and metal distribution in longitudinal tissue sections of the marine snail Nassarius reticulatus (Gastropoda, Prosobranchia). Snails were sampled in northern Brittany (France) at three stations with different contamination levels.The quantification of metal distribution (imaging or mapping) in a thin slice of the snail tissue was carried out using different strategies: by one-point calibration and via matrix-matched laboratory standards using different biological materials (BCR 278, snail tissue, and rat brain). Together with the imaging of metals the distribution of two non-metals (carbon and sulfur) was analyzed. The imaging LA-ICP-MS analysis yielded an inhomogeneous distribution for all elements investigated. The detection limits for the distribution analysis of Cu, Zn, Cd, Hg and Pb measured by LA-ICP-MS were in the low μg g−1 range.  相似文献   

20.
The coupling of laser ablation (LA) to inductively coupled plasma-mass spectrometry (ICP-MS) enables the direct analysis of solid samples with micrometric resolution. Analysis is often restricted to relatively small samples owing to the dimensions of conventional ablation cells. Here, we assess the performance of a large rectangular, commercially-available sample cell which enables analysis over a 10.2?×?5.2 cm2 area. Comparison with the conventional cell shows a small to moderate performance decrease for the large cell resulting from the dilution of ablated particles in a larger volume with a 4–31% lower signal output and longer signal tailings. The performance of this cell is however sufficient for the determination of both major and trace elements in many kinds of samples. The applicability of the large cell LA-ICP-MS setup was demonstrated by the determination of Al, Si, Mn, Fe, Cu, Zn Pb and U in sediment core sections at a resolution of 0.6 mm. Detection limits for sediment analysis were 7 mg Al kg?1, 68 mg Si kg?1, 0.5 mg Mn kg?1, 20 mg Fe kg?1, 0.2 mg Cu kg?1, 0.3 mg Zn kg?1, 0.08 mg Pb kg?1 and 0.003 mg U kg?1. Cyclic patterns, which would have been overlooked by conventional analysis at cm resolution, were observed in analysed sediments. This study demonstrates the potential of LA-ICP-MS in environmental analysis, with the large sample cell setup offering the possibility to analyse a wider range of samples without sectioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号