首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
1-(3-R-adamantan-1-yl)-2-[(triphenyl-λ5-phosphanylidene)hydrazinylidene]ethanone reacted with 4-aryl(hetaryl)-2,4-dioxobutanoic acids to give 2-{2-[2-(3-R-adamantan-1-yl)-2-oxoethylidene]hydrazinyl}-4-aryl(hetaryl)-4-oxobut-2-enoic acids which were shown to exist in solution as mixtures of Z- and E-isomeric enehydrazine tautomers. The products underwent cyclization to 3-{[2-(3-R-adamantan-1-yl)-2-oxoethylidene]- hydrazinylidene}-5-aryl(hetaryl)furan-2(3H)-ones.  相似文献   

2.
Electrophilic substitution reactions (formylation and acylation) in the series of 2-[2-(2-furyl)vinyl]- and 2-[2-(2-thienyl)vinyl]benzothiazoles leads to the corresponding derivatives at the α-position of the furan or thiophene ring. The presence of a vinylene bridge weakens deshielding effect of the benzothiazole fragment on π-excessive heterocycles, so that such compounds react at a higher rate and under milder conditions as compared to hetarylbenzothiazoles having no vinylene bridge.  相似文献   

3.
Diastereomers of N-(2-(1-adamantyl)-2-hydroxyethyl)cytisine were synthesized by reduction of N-(2-(1-adamantyl)-2-oxoethyl)cytisine with NaBH4. Their structures were established using x-ray structure analysis. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 244–247, May–June, 2007.  相似文献   

4.
The dinucleoside phosphate ΠdpΠd ( 4 ) was synthesized from the monomers 1-(5′-O-monomethoxytrityl - 2′ - deoxy - β - D - ribofuranosyl) - 2 (1 H) - pyridone ((MeOTr) Πd, 2 ) and 1-(5′-O-phosphoryl-3′-O-acetyl-2′-deoxy-β-D -ribofuranosyl)-(1H)-pyridone (pΠd(Ac), 3 ). Its 6.4% hyperchromicity and an analysis of the 1H-NMR. spectra indicate that the conformation and the base-base interactions in 4 are similar to those in natural pyrimidine dinucleoside phosphates.  相似文献   

5.
Nucleosides and Nucleotides. Part 16. The Behaviour of 1-(2′-Deoxy-β-D -ribofuranosyl)-2(1H)-pyrimidinone-5′-triphosphate, 1-(2′-Deoxy-β-D -ribofuranosyl-2(1H))-pyridinone-5′-triphosphate and 4-Amino-1-(2′-desoxy-β-D -ribofuranosyl)-2(1H)-pyridinone-5′-triphosphate towards DNA Polymerase The behaviour of nucleotide base analogs in the DNA synthesis in vitro was studied. The investigated nucleoside-5′-triphosphates 1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyrimidinone-5′-triphosphate (pppMd), 1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyridinone-5′-triphosphate (pppIId) and 4-amino-1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyridinone-5′-triphosphate (pppZd) can be considered to be analogs of 2′-deoxy-cytidine-5′-triphosphate. However, their ability to undergo base pairing to the complementary guanine is decreased. When pppMd, pppIId or pppZd are substituted for pppCd in the enzymatic synthesis of DNA by DNA polymerase no incorporation of these analogs is observed. They exhibit only a weak inhibition of the DNA synthesis. The mode of the inhibition is uncompetitive which shows that these nucleotide analogs cannot serve as substrates for the DNA polymerase.  相似文献   

6.
In an effort to develop an efficient synthetic method of highly diastereoselective (2′R)- and (2′S)-2′-deoxy[2′-2H]guanosines, chemoenzymatic conversion was investigated. The synthesis of (2′R > 98% de)-2′-deoxy[2′-2H]guanosine was achieved by biological transdeoxyribosylation using (2′R > 98% de)-2′-deoxy[2′-2H]uridine, 2,6-diaminopurine, and Enterobacter aerogenes AJ-11125, followed by treatment with adenosine deaminase. (2′S > 98% de)-2′-Deoxy[2′-2H]guanosine was synthesized from (2′S > 98% de)-2′-deoxy[2′-2H]uridine and 2,6-diaminopurine using thymidine phosphorylase and purine nucleoside phosphorylase instead of E. aerogenes AJ-11125.  相似文献   

7.
N-{2-[5-(2-Hydroxyphenylmethyleneamino)-1-alkylbenzimidazol-2-yl]phenyl}-4-methyl-benzenesulfamides (H2L) and their zinc complexes Zn2L2 were synthesized. The structure of the ligands and complexes was studied by IR, UV, 1Н NMR, X-ray absorption spectroscopy, and X-ray diffraction analysis. The complexes show green photoluminescence (λfl = 492 nm) with quantum yields φ = 0.07–0.17.  相似文献   

8.
A novel one-pot, three-component condensation reaction of an aldehyde, 2-aminobenzothiazole and 2-naphthol or 6-hydroxyquinoline in water to give 2′-aminobenzothiazolomethyl naphthols or 5-(2′-aminobenzothiazolomethyl)-6-hydroxyquinolines in high yields at 90 °C without using any catalyst, is described.  相似文献   

9.
Arylhydrazones were obtained by the reaction of arylhydrazines with -(N-acylamino)acetophenones and were converted into 3-(N-acylamino)-2-phenylindoles with substituents at positions 1, 5, 6, and 7 by Fischer cyclization.  相似文献   

10.
1,2′- and 1,3′-Bipyrroles, which are attractive precursors for the synthesis of bipyrrole-based natural products, are synthesized in one-pot from 2- and 3-nitropyrroles by a sequential nitro group reduction—Paal-Knorr pyrrole synthesis.  相似文献   

11.
By reaction of Z-3-(2-naphthyl)-3-chloro-2-propenal with semicarbazide hydrochloride and thiosemicarbazide the corresponding semicarbazone and thiosemicarbazone were obtained that underwent a heterocyclization into a pyrazole system with elimination of amide moieties and with migration of the naphthyl fragment into the position 4 of the pyrazole ring. The alkylation of 4-(2-naphthyl)pyrazole synthesized with 2-nitropentachloro-1,3-butadiene afforded 1,1-bis[4-(2-naphthyl)-pyrazol-1-yl]-2-nitrotrichloro-1,3-butadiene.__________Translated from Zhurnal Organicheskoi Khimii, Vol. 41, No. 5, 2005, pp. 753–755.Original Russian Text Copyright © 2005 by Vashkevich, Potkin, Kozlov.  相似文献   

12.
Summary 2-(2-Nitrophenyl)-ethanol (2) was methylated with dimethyl sulfate to give 2-(2-methoxyethyl)-1-nitrobenzene (3a) which then was reduced with hydrazine hydrate in the presence ofRaney nickel to 2-(2-methoxyethyl)-aniline (1a). Compound1a can be transformed into the N-monosilylated derivative4 by lithiation withn-butyllithium and subsequent reaction with chlorotrimethylsilane. Reaction of2 withp-toluenesulfonyl chloride yields 2-(2-nitrophenyl)-ethylp-toluenesulfonate (5), which reacts with sodium thiomethoxide to give 2-(2-nitrophenyl)-ethylp-toluenesulfonate (5), which reacts with sodium thiomethoxide to give 2-(2-thiomethoxyethyl)-1-nitrobenzene (3b).3b was reduced with hydrazine hydrate in the presence ofRaney nickel to yield 2-(2-thiomethoxyethyl)-aniline (1b). Ethyl (2-nitrophenyl)-acetate (6) could be dimethylated with methyl iodide in the presence of potassiumtert-butoxide and 18-crown-6 to give ethyl 2-methyl-2-(2-nitrophenyl)-propionate (7). Reduction of7 with lithium borohydride yields 2,3-dihydro-3,3-dimethyl-1H-indole (9) and 2-[(1-hydroxy-2-methyl)-2-propyl]-aniline (10).
Synthese von 2-(2-Methoxyethyl)- und 2-(2-Thiomethoxyethyl)-anilin und verwandten Verbindungen
Zusammenfassung 2-(2-Nitrophenyl)-ethanol (2) wurde mit Dimethylsulfat zu 2-(2-Methoxyethyl)-1-nitrobenzol (3a) methyliert, das sich mit Hydrazinhydrat in Gegenwart vonRaney-Nickel zu 2-(2-Methoxyethyl)-anilin (1a) reduzieren läßt. Verbindung1a kann durch Metallierung mitn-Butyllithium und anschließende Reaktion mit Chlortrimethylsilan in dasN-monosilylierte Derivat4 umgewandelt werden. Reaktion von2 mitp-Toluolsulfonylchlorid ergab 2-(2-Nitrophenyl)-ethyl-p-Toluolsulfonat (5), das mit Natriumthiomethanolat zu 1-Nitro-2-(2-thiomethoxyethyl)-benzol (3b) reagiert.3b wurde mit Hydrazinhydrat in Gegenwart vonRaney-Nickel zu 2-(2-Thiomethoxyethyl)-anilin (1b) reduziert. Ethyl-2-(nitrophenyl)-acetat (6) kann mit Methyliodid in Gegenwart von Kalium-tert-butoxid und 18-Krone-6 zu Ethyl-2-methyl-2-(2-nitrophenyl)-propionat (7) dimethyliert werden. Reduktion von7 mit Lithiumborhydrid lieferte 2,3-Dihydro-3,3-dimethyl-1H-indol (9) und 2-[(1-Hydroxy-2-methyl)-2-propyl]-anilin (10).
  相似文献   

13.
Alkylation of sodium 4(5)-alkyl-6-oxo-1,6-dihydropyrimidine-2-thiolates with 2-bromo-1-(4-bromophenyl)ethan-1-one afforded 2-{[2-(4-bromophenyl)-2-oxoethyl]sulfanyl}pyrimidin-4(3H)-ones. Analogous reaction with sodium 4-trifluoromethyl-6-oxo-1,6-dihydropyrimidine-2-thiolate gave a mixture of 2-{[2-(4-bromophenyl)-2-oxoethyl]sulfanyl}-4-(trifluoromethyl)pyrimidin-4(3H)-one and its intramolecular cyclization product, 3-(4-bromophenyl)-3-hydroxy-7-trifluoromethyl-2,3-dihydro[1,3]thiazolo[3,2-a]-pyrimidin-5-one.  相似文献   

14.
Methods have been developed for the synthesis of (2E)-1,1-dimethoxyalk-2-en-4-ols and (2E)-4-hydroxyalk-2-enals by reaction of (2E)-4,4-dimethoxybut-2-enals and Grignard compounds. Thermal isomerization of (2E)-4-hydroxyalk-2-enals gave the corresponding 2-alkylfurans.  相似文献   

15.
The synthesis of two new acyclic nucleoside analogs, 2-(2′,3′-dihydroxypropyl)-5-amino-2H-1,2,4-thiadiazol-3-one (1) and 3-(2′,3′-dihydroxypropyl)-5-amino-3H-1,3,4-thiadiazol-2-one (2), is reported. The first compound, 1, was obtained by reaction of 3-chloro-1,2-propanediol with the sodium salt of 5-amino-2H-1,2,4-thiadiazol-3-one (3) in anhydrous dimethylformamide. Similarly, 5-amino-3H-1,3,4-thiadiazol-2-one (4) reacted with 3-chloro-1,2-propanediol to give 2. The thiadiazole 4 was prepared by condensation-cyclization of hydrazothiodicarbonamide (9).  相似文献   

16.
Selenophene-alanines, labelled with γ-emitting selenium-75, are potential diagnostic agents for disorders of the pancreas. Two of the positional isomers of selenienyl-alanine were synthesized, namely 2-selenienylalanine [2-amino-3-(2-selenienyl)propanoic acid] (88% yield) and 3-selenienylalanine [2-amino-3-(3-selenienyl)propanoic acid] (65% yield). Both amino acids were prepared from the known chloromethyl selenophenes (2- and 3-) by reaction with diethyl acetamidomalonate and subsequent hydrolysis. The method employed was found to be more productive than others which were tried.  相似文献   

17.
The regiospecific reaction of 5-vinyl-3′,5′-di-O-acetyl-2′-deoxyuridine ( 2 ) with HOX (X = Cl, Br, I) yielded the corresponding 5-(1-hydroxy-2-haloethyl)-3′,5′-di-O-acetyl-2′-deoxyuridines 3a-c . Alternatively, reaction of 2 with iodine monochloride in aqueous acetonitrile also afforded 5-(1-hydroxy-2-iodoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 3c ). Treatment of 5-(1-hydroxy-2-chloroethyl)- ( 3a ) and 5-(1-hydroxy-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 3b ) with DAST (Et2NSF3) in methylene chloride at -40° gave the respective 5-(1-fluoro-2-chloroethyl)- ( 6a , 74%) and 5-(1-fluoro-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6b , 65%). In contrast, 5-(1-fluoro-2-iodoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6e ) could not be isolated due to its facile reaction with methanol, ethanol or water to yield the corresponding 5-(1-methoxy-2-iodoethyl)- ( 6c ), 5-(1-ethoxy-2-iodoethyl)- ( 6d ) and 5-(1-hydroxy-2-iodoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 3c ). Treatment of 5-(1-hydroxy-2-chloroethyl)- ( 3a ) and 5-(1-hydroxy-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 3b ) with thionyl chloride yielded the respective 5-(1,2-dichloroethyl)- ( 6f , 85%) and 5-(1-chloro-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6g , 50%), whereas a similar reaction employing the 5-(1-hydroxy-2-iodoethyl)- compound 3c afforded 5-(1-methoxy-2-iodoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6c ), possibly via the unstable 5-(1-chloro-2-iodoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine intermediate 6h . The 5-(1-bromo-2-chloroethyl)- ( 6i ) and 5-(1,2-dibromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6j ) could not be isolated due to their facile conversion to the corresponding 5-(1-ethoxy-2-chloroethyl)- ( 6k ) and 5-(1-ethoxy-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 61 ). Reaction of 5-(1-hydroxy-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 3b ) with methanolic ammonia, to remove the 3′,5′-di-O-acetyl groups, gave 2,3-dihydro-3-hydroxy-5-(2′-deoxy-β-D-ribofuranosyl)-furano[2,3-d]pyrimidine-6(5H)-one ( 8 ). In contrast, a similar reaction of 5-(1-fluoro-2-chloroethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6a ) yielded (E)-5-(2-chlorovinyl)-2′-deoxyuridine ( 1b , 23%) and 5-(2′-deoxy-β-D-ribofuranosyl)furano[2,3-d]pyrimidin-6(5H)-one ( 9 , 13%). The mechanisms of the substitution and elimination reactions observed for these 5-(1,2-dihaloethyl)-3′,5′-di-O-acetyl-2′-deoxyuridines are described.  相似文献   

18.
Enantiospecific Synthesis of (+)-(2R)- and (?)-(2S)-6-Ethyl-3,4-dihydro-2-methyl-4-oxo-2H-pyran-5-carboxylic Acid The two enantiomers (?)-(2S)- and (+)-(2R)-6-ethyl-3,4-dihydro-2-methyl-4-oxo-2H-pyran-5-carboxylic acid ((S)- and (R)- 7 ) have been synthesized from (+)-(3S) and (?)-(3R)-3-hydroxybutanoates, respectively (Scheme 1). By reduction and decarboxylation, the tetrahydro-2H-pyranols (2R, 4R, 6S)- and (2S, 4S, 6R)- 13 , respectively, were obtained with an enantiomeric excess of ≥ 93%.  相似文献   

19.
On thermolysis of 4-methoxy- and 4-alkylamino-2-(2-chloroethoxy)-6-morpholino(piperidino)-sym-triazines, the corresponding oxazolo- or imidazo-sym-triazinones are formed by elimination of methyl chloride or hydrogen chloride, and 4,6-disubstituted 3-(2-chloroethyl)-sym-triazin-2-ones are formed from 4,6-dimorpholino(dipiperidino) derivatives.  相似文献   

20.
The synthesis of an oxotremorine analog, (E-5-oxo-2-(3α and 3β-hydroxy-1-octenyl)-1-(4-N-pyrrolidino-2-butynyl)pyrrolidine, is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号