首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The strength properties of and internal stresses in epoxy and epoxyphenol resins and GRPs based on them are investigated using an optical method of determining internal stresses. The GRPs had tape and fabric reinforcement. Compared with the internal stresses in unplasticized specimens, the stresses in pure resin films and in GRPs based on plasticized resins are found to be smaller. It is shown that the distribution of internal stresses in GRPs is anisotropic. The highest internal stresses are observed in tape-reinforced GRPs in a direction normal to the fibers. Glass reinforcement in two directions at right angles reduces the internal stresses in GRPs as compared with pure resin films. In both reinforced and unreinforced films, the internal stresses depend on the curing conditions.Mekhanika polimerov, Vol. 1, No. 1, pp. 82–88, 1965  相似文献   

2.
A method is proposed for determining the residual stresses and strains in wound glass-reinforced plastic products. The fabrication process is divided into five stages: winding, heating polymerization, cooling, and removal from the mandrel. The initial stresses that develop during winding and the subsequent stress increment associated with heating are taken into account. Polymerization is treated as a process during which the mechanical and thermophysical properties of the material change. Chemical shrinkage of the resin and its filtration through the fiberglass are disregarded. Equations are derived for the residual radial and peripheral stresses in the finished product, for the residual change in inside diameter, and for the temperature at which the product is released from the mandrel during the cooling process. The experimental data relating to two types of wound products are discussed. The results of a computation of the residual stresses and the residual changes in inside diameter are compared with the experimental data.Moscow Power Engineering Institute. Translated from Mekhanika Polimerov, Vol. 5, No. 1, pp. 134–139, January–February, 1969.  相似文献   

3.
Considered in this study are the axially-symmetric problems of fracture of composite materials with interacting cracks, which are subjected to initial (residual) stresses acting along the cracks planes. An analytical approach within the framework of three-dimensional linearized mechanics of solids is used. Two geometric schemes of cracks location are studied: a circular crack is located parallel to the surface of a semi-infinite composite with initial stresses, and two parallel co-axial penny-shaped cracks are contained in an infinite composite material with initial stresses. The cracks are assumed to be under a normal or a radial shear load. Analysis involves reducing the problems to systems of second-kind Fredholm integral equations, where the solutions are identified with harmonic potential functions. Representations of the stress intensity factors near the cracks edges are obtained. These stress intensity factors are influenced by the initial stresses. The presence of the free boundary and the interaction between cracks has a significant effect on the stress intensity factors as well. The parameters of fracture for two types of composites (a laminar composite made of aluminum/boron/silicate glass with epoxy-maleic resin and a carbon/plastic composite with stochastic reinforcement by short ellipsoidal carbon fibers) are analyzed numerically. The dependence of the stress intensity factors on the initial stresses, physical-mechanical parameters of the composites, and the geometric parameters of the problem are investigated.  相似文献   

4.
By using a finite-element model elaborated, the sensitivity of residual stresses of polyester/glass cross-ply laminates to manufacturing and material parameters is investigated. The development of residual stresses in the laminates and the significance of the parameters for the problem are discussed. It is found that the main attention in calculating residual stresses should be focused on the properties of resin, which must be measured with care. The most important parameters related to the resin are, of course, its stiffness, thermal expansion, and chemical shrinkage, while the properties of fibers can be obtained from material handbooks with a sufficient accuracy. In curing a thin laminate in an autoclave, the simulation of chemical reactions and the parameters needed in thermal analysis are quite insignificant, because, in practice, the autoclave temperature and the properties of the mold determine the laminate temperature history.  相似文献   

5.
The kinetics of the temperature residual stresses and strains in thick-walled reinforced-plastic cylinders and rings have been experimentally investigated employing a special procedure for continuously monitoring the internal strains and stresses in the various zones of the semifinished product during the heat treatment stage. The effect of the resin polymerization (polycondensation) temperature and the mandrel material on the magnitude and distribution of the temperature stresses is considered. The total residual stresses have been determined by a nondestructive strain-gauge method with differentiation of the components.Translated from Mekhanika Polimerov, No. 6, pp. 1040–1046, November–December, 1971.  相似文献   

6.
The proposed continuity condition is based on the hypothesis that the time dependence of the strength and limiting strain of the resin is determined by the limiting value of the specific work done by the stresses. The case when the reinforcement is elastic and the rheological properties of the resin are described by a linear differential equation is considered.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, Vol. 4, No. 5, pp. 844–852, September–October, 1968.  相似文献   

7.
Research on the effect of technological factors on the strength of reinforced-plastics structures is reviewed. Attention is concentrated on structures in the form of bodies of revolution fabricated by the winding technique. The influence of the winding parameters and the curing regime on the residual stresses is discussed. Data on the variation of the mechanical properties of the resin in the course of the curing process are examined. The contributions of chemical and thermal shrinkage to residual stress formation are compared. Methods of reducing the residual stresses are considered.Presented at the 2nd All-Union Conference on Polymer Mechanics, Riga, November 10–12, 1971.Moscow Power Engineering Institute. Translated from Mekhanika Polimerov, No. 3, pp. 529–540, May–June, 1972.  相似文献   

8.
A previously proposed method is used to obtain expressions for calculating the residual stresses as a function of the physicomechanical properties of the polymer matrix and the reinforcement ratio. The calculation results are presented and the corresponding state of stress and strain analyzed. There are considerable deviations (in the magnitude and distribution of the stresses) from models that neglect or only take partly into account the interaction of the fibers.Moscow Ordzhonikidze Aviation Institute. Translated from Mekhanika Polimerov, Vol. 4, No. 6, pp. 1051–1058, November–December, 1968.  相似文献   

9.
The effect of the parameters of heat treatment and programmed winding under tension on the residual stresses in thin-walled coiled parts made from glass plastic by the "dry" winding of a heated glass strip on an unheated mandrel is studied experimentally. The effect of the thickness of the parts on the maximum radial residual stresses is considered. A method is proposed for regulating the residual stresses in parts with very thick walls.Translated from Mekhanika Polimerov, No. 1, pp. 75–80, January–February, 1972.  相似文献   

10.
Conclusions The stress-strain state and strength of the quasiisotropic carbon-reinforced plastics depend strongly on the lay-up system of the adjacent plies because the magnitude of the interply stresses and their distribution greatly change when the reinforcement system is changed. The highest stress intensity is recorded at the free edge of the specimen. The magnitude of the residual thermal stresses is comparable with that of the mechanical stresses at the instant of formation of cracks in the weak plies of the composite. The first microcracks form inside the plies with the orientation 90 and ±45° in the direction of reinforcement. The IACs start to form at the free edges of the specimen and propagate into the material at strains from 12 to 39% of limiting strain x l . Delamination of the laminated composite starts later than the formation of IACs (40–88% of x l ) because the normal stress x is higher than z. The optimum lay-up system of the composite is [0/45/90/-45]s because this system ensures higher stiffness of the material. The ±45 and 90° plies are not suitable for external surfaces of the composite since they start to crack very early. The quasiisotropic composites are less sensitive to the value of G2 3 than the composites with the ply lay-up [±]s.Translated from Mekhanika Kompozitnykh Materialov, No. 3, pp. 449–454, May–June, 1985.  相似文献   

11.
A method is proposed for calculating statically determinate beams made of reinforced plastics with allowance for the reinforcement ratio, the rheological properties of the resin and the reinforcement, the effect of shears, the type of reinforcement distribution, and the time factor. In constructing the corresponding laws of deformation it is assumed that both components obey the "standard solid" law.Mekhanika Polimerov, Vol. 2, No. 1, pp. 100–107, 1966  相似文献   

12.
The bond of ordinary steel reinforcement in concrete depends on many factors, such as the pullout resistance, the geometry of a concrete member, the placement of a bar in the member cross section, the cover splitting, the confinement caused by concrete and the surrounding reinforcement, the order of bond-crack appearance, and the bond-stress distribution along the bond length. The bond of FRP reinforcement depends on even a greater number of factors. Moreover, the types of FRP bars are numerous. Their surface is weaker than that of steel bars and may fracture by bond forces. The surface of FRP bars is softer and does not create as high local stress concentrations in bond contact points to concrete as the harder steel bars do. This fact often delays the appearance of cover splitting cracks along the bars. However, the load necessary for developing the crack pattern of ultimate splitting failure in concrete is then very dependent on whether the bar surface is glossy or rough. The FRP reinforcement can also be used for external shear and/or flexural strengthening of existing members. For this application, FRP bars are placed in grooves cut on the surface of the member to be strengthened and are fixed there with a cement mortar or epoxy paste. In such an application, the performance of bond between the FRP rod and the mortar or resin and then between the mortar or resin and concrete is critical for the effectiveness of the technique. The presence of two interfaces increases the number of parameters needed to characterize the global joint behavior and introduces new possible failure modes. The fundament for the bond resistance estimation should be an accepted bond philosophy linked to appropriate models. A system of bond tests should provide necessary coefficients for the models.  相似文献   

13.
Due to the different coefficients of thermal expansion of aluminium and silicon, high residual stresses of second order occur in Al-Si alloys depending on the cooling rate during the molding process. In products as for example crank cases made of Al-Si alloys these residual stresses may cause microcracks. In the work at hand measurements of the eigenstresses in the single phases (i.e. residual stresses of second kind) performed via neutron diffractometry are compared to numerical simulations for a specific cooling rate. To this end a three-phase model is presented, which considers the α aluminium, the eutectic aluminium, and the silicon particles. The presented model is able to predict the residual stresses in the single phases within an elastoplastic framework. The simulation of tensile loadings of these structures are compared to experiments. The numerical computations are carried on stochastic geometry models by using a fast solver [1] for the Lippmann-Schwinger integral equation, which is based on the fast Fourier transformation. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The laws of variation of the strains and critical stresses for smooth thin circular cylindrical glass-reinforced plastic shells based on ÉDT-10P resin have been experimentally investigated at different orientations of the fabric reinforcement. The results of the tests are compared with the theoretical data obtained from the relations of the theory of elasticity of an orthotropic body and orthotropic shells.N. E. Zhukovskii Central Aerohydrodynamic Institute of Production Technology and Organization, Moscow. Translated from Mekhanika Polimerov, No. 4, pp. 684–690, July–August, 1973.  相似文献   

15.
Relations are proposed for determining at any moment of time the strains in a reinforced plastic stressed in the resin and the reinforcement by a constant tensile load as a function of the reinforcement ratio and the rheological properties of the reinforcement and resin. The proposed relations agree quite well with the experimental data.Mekhanika Polimerov, Vol. 1, No. 6, pp. 69–77, 1965  相似文献   

16.
Diffraction methods gain much attention in nondestructive residual stress analysis. While the determination of macroscopic residual stresses is of main interest, the presence of microscopic residual stresses arising from microstructural characteristics of the material can influence the analysis of the acquired data. The residual stress measurements by neutron diffraction on IN718 pancake forgings are analyzed in this work. We present a simple mechanical model supporting the hypothesis that the phase average of the microscopic residual stress accumulated during the forging process is anisotropic causing anisotropy of the macro stress free reference lattice parameter. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Failure conditions are proposed for an orthogonally reinforced plastic in uniaxial tension at an arbitrary angle to the directions of reinforcement. The failure conditions are formulated for the case when the strength of the bond between the resin and the reinforcement is greater than the strength of the resin. The strength of the resin, which is in a volume state of stress, is determined by an energy criterion.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 4, pp. 629–633, July–August, 1973.  相似文献   

18.
A method is proposed for determining the mean values of the initial thermostructural stresses in reinforcement and matrix resulting from the uniform cooling of a two-component unloaded elastic body from the natural state (resin hardening temeprature) to the working temperature (external loading).V. A. Steklov Mathematical Institute, Sverdlovsk Branch, Academy of Sciences of the USSR. S. M. Kirov Ural Polytechnic Institute, Sverdlovsk. Translated from Mekhanika Polimerov, Vol. 4, No. 5, pp. 822–828, September–October, 1968.  相似文献   

19.
The variation of the axial and radial components of the residual stresses in fiber-reinforced polyethylene with distance from the fiber has been investigated. It is shown that, irrespective of the agent employed, coupling leads to an increase in stresses. The values obtained for the residual stresses are compared with the adhesion strength determined by the shearing method. The effect of a structure-forming agent on the residual stresses is investigated.Mendeleev Moscow Chemical Engineering Institute. Translated from Mekhanika Polimerov, No. 4, pp. 722–724, July–August, 1971.  相似文献   

20.
The present work deals with the incorporation of residual stresses existing in circumferential direction of arterial walls. For the consideration of the residual stresses a novel model will be presented. This model is based on the assumption that residual stresses decrease the stress gradients through the thickness of the arterial wall. Since arterial walls exhibit a pronounced material behavior in fiber direction, the radial gradients of the fiber stresses are considered for the definition of the residual stresses. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号