首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High pressure DSC and simultaneous TG/DSC were used to study the different kinds of boron that was used in the fuel-rich propellant and the amorphous boron in different gases and different pressure. Also, some of the samples before the experiment and after the experiment were analyzed by the SEM. The results show that: (1) there is a big exothermic peak between 550 °C and 850 °C for all the samples because the combustion heat of boron is very high, and the exothermic peak appears in advance when the pressure or the oxygen concentration increases. (2) Although the reaction process of all the samples with air or oxygen could be divided into five stages, the reaction characteristics are different from each other. Especially, amorphous boron is much more active than the boron used in the fuel-rich propellant. (3) The exothermic peak at about 700 °C appears in advance, and the percentage conversion of boron decreases when the content of magnesium increases and boron–magnesium compound is used as the raw materials. (4) Some samples start to lose their mass for the sake of the evaporation of the (BO)n.  相似文献   

2.
Boron was chosen as fuel owing to its excellent thermodynamic values for combustion. The difficulty of the boron in combustion is the formation of a surface oxide layer, which postpones the combustion process, reducing the performance of the rocket engine. In this paper, magnesium boride was sintered as high-energy fuel as a substitute for boron. The combustion heat and efficiency of magnesium boride and boron were determined using oxygen bomb calorimeter. The combustion characteristics of magnesium boride were investigated by thermal analysis, chemical analysis, XRD, and EDS. Results show that the combustion performance of magnesium boride are better than that of amorphous boron in oxygenated environments. The evaporation of magnesium in magnesium boride combustion process prevent the formation of a closed oxide layer, leading to higher combustion efficiency.  相似文献   

3.
Boron was chosen as fuel in view of its excellent thermodynamic values for combustion, as compared to traditional fuels. The problem of the boron in combustion is the formation of a surface layer of oxide, which delays the ignition process, reducing the performance of the rocket engine. This paper presents a high-energy fuel for rocket engines. It is composed of sintered boron (borides and carbides and vitreous compounds) with a reducing chemical agent. Borides and boron carbide were prepared since the combustion heat of the latter is similar to that of the amorphous boron (in: K.K. Kuo (Ed.), Boron-Based Solid Propellant and Solid Fuel, Vol. 427, CRC Press, Boca Raton, FL, 1993). Several chemical reducing elements were used, such as aluminum, magnesium, and coke. As the raw material for boron, different compounds were used: amorphous boron, boric acid and boron oxide.  相似文献   

4.
The chemical stability of a propellant and its influence on the ballistic properties during aging is a subject of interest. The effect of aging on ballistic properties, viz., ignition delay, burning rate, and heat of combustion for an aluminised ammonium perchlorate–hydroxyl-terminated polybutadiene (AP/HTPB) composite propellant during accelerated aging were investigated. Samples of composite propellants were aged at 60 and 70 °C at relative humidity of 50% in a climatic chamber. The propellant samples were tested with pressurized nitrogen gas environment for ignition delay measurement. Test results indicate that aging does not have any appreciable effect on ignition delay. The change in ignition delay time is less than 3% within the scatter of the data. Experiment results indicate that burn rate do affect with pressure but aging does not have much effect on burn rate. It was also observed that the burning rate at low pressures did not undergo significant changes during the aging period. The most significant of all the ballistic properties of this propellant is the burning rate exponent which increased by about 10% during the aging period.  相似文献   

5.
Single-stage conversion of alkane mixtures simulating associated petroleum gas (APG) to syngas is studied in a static installation and in a flow reactor based on the rocket combustion chamber. Yields of the desired reaction products close to their thermodynamically equilibrium values are obtained. A range of experimental parameters, in which ignition delays of APG-oxygen mixtures exhibit negative or zero temperature coefficients, is determined for the first time. Such a behavior of ignition delays is proved to be a fundamental property of fuel-rich APG mixtures. The range of abnormal temperature dependence of ignition delays is shown to be extended as the initial pressure rises, which makes it possible to significantly increase the reaction rate by increasing the initial working pressure.  相似文献   

6.
为了更好地了解煤粉在增压富氧条件下的燃烧过程,利用加压热天平(PTGA)结合X射线衍射仪(XRD),研究了增压富氧燃烧条件下压力对煤粉燃烧特性及煤中矿物演变的影响。研究表明,随着压力的升高,煤粉常压时的非均相着火逐渐转变为均相着火,当压力升高到3 MPa开始向非均相着火过渡,并在5 MPa时完全转变成非均相着火。由于煤粉着火机理的转变,综合燃烧特性指数S随着压力的增加先升高后降低。不同的着火机理下,煤粉的燃烧温度也会有所差别。常压时非均相着火较高的燃烧温度使得反应生成了莫来石等矿物,而1 MPa时均相着火较低的燃烧温度则使得煤灰中出现了伊利石等矿物。压力继续升高,均相着火开始向非均相着火过渡,燃烧温度逐步升高,伊利石逐渐转变为莫来石。  相似文献   

7.
Hexagonal boron nitride (h‐BN) is regarded as a graphene analogue and exhibits important characteristics and vast application potentials. However, discovering a facile method for the preparation of nanoporous crystalline h‐BN nanosheets (h‐BNNS) is still a challenge. Herein, a novel and simple route for the conversion of amorphous h‐BN precursors into highly crystalline h‐BNNS was achieved through a successive dissolution–precipitation/crystallization process in the presence of magnesium. The h‐BNNS has high crystallinity, high porosity with a surface area of 347 m2 g?1, high purity, and enhanced thermal stability. Improved catalytic performance of crystalline h‐BNNS was evidenced by its much higher catalytic efficiency in the dehydrogenation of dodecahydro‐N‐ethylcarbazole, compared with its amorphous h‐BN precursor, as well as other precious‐metal‐loaded heterogeneous catalysts.  相似文献   

8.

Boron carbide (B4C) is one of the main products from the primary combustion of boron (B)-based propellants and has a significant influence on the secondary combustion of B. To systematically evaluate its effects on the secondary combustion of B, mixtures of B4C and B in different mass ratios were prepared. To study the ignition temperatures and combustion flames of the samples, a xenon lamp ignition experimental system and a flame shape test system were designed, respectively. A thermogravimetry–differential scanning calorimetry–Fourier transform infrared spectroscopy combined thermal analysis system was used to study the thermal oxidation characteristics and analyze the gaseous products of the samples. The results indicate that B4C reduces the heat absorption at the beginning of the ignition, but subsequently prevents the rapid rise of sample temperature. During the stable combustion stage, the maximum flame length under optical density 10−4 (OD4) filter was 20.4 mm, and the maximum flame length under 580 nm + OD4 filters (represents the combustion of B element) was 16.7 mm. The samples contained a small amount of HBO2 and H3BO3, which led to slight mass loss during the low temperature section of the thermal oxidation process. During the high temperature section, the oxidation of B and B4C caused considerable mass gain. The gaseous products of the thermal oxidation process include CO2, CO, and H2O. In general, the B content of 60% was the most beneficial to decrease the oxidation temperature, increase the combustion intensity, and improve the heat-releasing ability of the samples.

  相似文献   

9.
Magnesium nanopowder has attracted many interests in the recent years, which has a very difficult and costly synthesis process because of its high activity. In this work, magnesium nanoparticles stabilized with amorphous carbon (Mg–C nanoparticles) were synthesized by submerged arc discharge technique in kerosene. The arc discharge was generated between two electrodes of magnesium at the arc current of 1 A and arc voltage of 50 V. Mg–C nanoparticles were characterized by various techniques. Dynamic light scattering result indicated that size of magnesium nanoparticles is about 35 nm. X-ray diffraction showed that the produced sample consisted of hexagonal magnesium and amorphous carbon and there was no presence of magnesium oxides in the pattern. Field emission scanning electron microscopy and transmission electron microscopy results illustrated that the sample has morphology of agglomerated nanospheres. Energy dispersive X-ray spectroscopy demonstrated formation of 57 percent magnesium and 43 percent carbon. Differential scanning calorimetry analysis showed that the amorphous carbon increased ignition temperature of nanoparticles by 180 °C compared to pure magnesium micron-sized powder. Therefore, Mg–C nanoparticles can have many applications in different fields similar to magnesium nanopowders. However, by producing Mg–C nanoparticles, there is no need for vacuum chamber or inert gases during production and after that, since amorphous carbon protects magnesium nanoparticles from oxidation.  相似文献   

10.
在激波管上进行了气相十氢萘/空气混合物的着火延迟测量, 着火温度为950-1395 K, 着火压力为1.82×105-16.56×105 Pa, 化学计量比分别为0.5、1.0 和2.0. 在侧窗处利用反射激波压力和CH*发射光来测出着火延迟时间. 系统研究了着火温度、着火压力和化学计量比对十氢萘着火延迟时间的影响. 实验结果显示着火温度和着火压力的升高均会缩短着火延迟时间. 首次在相对高和低压的条件下观察到了化学计量比对十氢萘着火延迟的影响是完全相反的. 当压力为15.15×105 Pa时, 富油混合物呈现出最短的着火延迟时间, 而贫油混合物的着火延迟时间却是最长的. 相反, 当压力为2.02×105 Pa时, 富油混合物的着火延迟时间最长. 着火延迟数据与已有的动力学机理的预测值进行对比, 结果显示机理在所有的实验条件下均很好地预测了实验着火延时趋势. 为了探明化学计量比对着火延迟时间影响的本质, 对高、低压条件下的着火延时进行了敏感度分析.结果显示, 压力为2.02×105 Pa时, 控制着火延迟的关键反应为H+O2=OH+O, 而涉及十氢萘及其相应自由基的反应在15.15×105 Pa时对着火延迟起主要作用.  相似文献   

11.
提出了一套系统化多级机理简化策略,包含基于误差传播的直接关系图法、峰值浓度分析法、线性同分异构体集总法、主组分分析法、温度敏感性分析和产率分析法,并将其应用于汽油四组分表征燃料详细反应机理的简化,构建了适用于HCCI发动机燃烧边界下的简化机理模型,包含149个物种、414个反应。通过与激波管、快速压缩机、增压HCCI发动机实验数据的对比验证表明,新机理可以准确地预测较宽范围条件下的着火滞燃期,在HCCI发动机的单区模型计算中,该机理对缸内燃烧和排放的预测结果是令人满意的。放热率分析表明, R + O2反应是控制中间温度区放热的关键基元反应,在高压低温下,异辛烷的放热起到决定性作用。添加2-戊烯之后,使得四组分模型相较于三组分模型更为准确,尤其是对于第一阶段着火滞燃期有显著影响,为进一步探索调和燃料组分比例控制HCCI燃烧提供了一条新思路。  相似文献   

12.
为探究更高预热温度下(>1000℃)半焦预热燃烧工艺的降氮潜力,在两段电炉串联组成的沉降炉系统上考察了预热温度(600-1400℃)、燃烧温度(1200-1400℃)和过量空气系数(α=0.6-1.4)对半焦燃烧NO释放和燃尽的影响。结果表明,进一步提高预热温度(>1000℃)能够同时降低NO排放和提高燃尽率,并且富燃料工况下,预热温度升高带来的NO降低幅度比贫燃料工况下降低幅度大,预热温度从800℃升高至1400℃时,NO降幅最大可达74%(α=0.6),明显高于贫燃料条件下NO降幅20.6%(α=1.4)。但是,富燃料工况下,预热温度升高带来的飞灰含碳量降幅比贫燃料工况下降低幅度小,贫燃料条件下飞灰含碳量最大降幅为26.8%(α=1.4),高于富燃料条件下降幅15.95%(α=0.6)。对于燃烧温度对半焦燃烧NO释放的影响,发现存在一临界过量空气系数α=1,当过量空气系数高于该临界值时,随燃烧温度提高,NO排放量增加,当过量空气系数低于该临界值时,随燃烧温度的提高,NO排放量减小。  相似文献   

13.
由于详细化学反应机理在模拟燃烧室燃烧时,计算量极大,很难被广泛运用。为了满足工程设计要求,采用替代燃料的简化机理进行计算不失为一种行之有效的方法。本文基于误差传播的直接关系图法和敏感性分析法对正十二烷180组分1962步高温机理(温度大于1100 K)进行简化,获得40组分234步化学反应机理。在温度为1100–1650 K,压力为0.1–4 MPa条件下,采用简化机理及详细机理对不同当量比、压力下着火延迟时间进行模拟,模拟结果与实验数据吻合得较好。通过对不同压力及温度下火焰传播速度进行模拟,验证了简化机理能够正确地反映正十二烷的燃烧特性。利用C_(12)H_(26)/OH/H_2O/CO_2等重要组分随时间变化的数据,验证了简化机理能够准确描述燃烧过程反应物消耗、基团变化、生成物产生的过程,并表明该机理具有较高的模拟精度。利用该简化机理对本生灯进行数值分析,结果表明该机理能够准确地反映火焰区温度和组分浓度的变化。紧凑的正十二烷高温简化机理不仅能够正确体现其物理化学特性,而且能够用于三维数值模拟,具有较高的工程运用价值和应用前景。  相似文献   

14.
高碳烃宽温度范围燃烧机理构建及动力学模拟   总被引:1,自引:0,他引:1  
发动机中燃料点火特性以及燃烧能量的释放对于发动机设计具有非常重要的作用,为了提高燃料的燃烧效率以及减少燃料在燃烧过程中污染物的排放,基于反应动力学机理对燃料燃烧过程的模拟就显得十分必要。因此需要更加深入的认识碳氢燃料的燃烧机理,探索其在燃烧过程中十分复杂的化学反应网络。为了发展能够适用于实际燃料多工况条件(宽温度范围、宽压力范围和不同当量比)燃烧的燃烧机理,基于碳氢燃料机理自动生成程序ReaxGen构建了正癸烷燃烧详细机理(包含1499个物种,5713步反应)和正十一烷燃烧详细机理(包含1843个物种,6993步反应)。详细机理主要由小分子核心机理和高碳烃类(C5以上)机理两部分组成。为了验证机理的合理性与可靠性,本文对于高碳烃燃烧新机理在点火延时时间以及物种浓度曲线进行了动力学分析,并与实验数据及国内外同类机理进行了对比,结果表明本文提出的正癸烷和正十一烷燃烧新机理在比较宽泛的温度、压力和当量比条件下都具有较高的模拟精度,为发展精确航空煤油燃烧模型提供了基础数据。同时考虑到详细机理的复杂性以及机理分析的计算量大和时耗长,本文基于误差传播的直接关系图形(Directed Relation Graph with Error Propagation,DRGEP)方法简化得到的包含709组分2793反应的正癸烷和包含820组分3115反应的正十一烷简化机理,使用DRGEP方法时所采用的数据点选自压力范围从1.0×10~5 Pa到1.0×10~6Pa,当量比范围从0.5到2.0,初始温度范围从600到1400时恒压点火的模拟结果在点火延迟时间附近区域的抽样,同时在正癸烷机理简化中选取正癸烷、O_2和N_2作为初始预选组分,正十一烷的机理简化中主要选取正十一烷、O_2和N_2作为初始预选组分,得到的简化机理在比较宽泛的条件下的预测结果与详细机理吻合很好。最后结合敏感度分析方法分析了正癸烷和正十一烷的点火延迟敏感性,考察了机理中影响点火的关键反应。结果表明:这些机理能够合理描述正癸烷和正十一烷的自点火特性,在工程计算流体力学仿真设计中有很好的应用前景。  相似文献   

15.
A new approach to improve the performance of composite propellants was developed in which reactive nanocomposites (RNCs) are used as replacements for aluminum powders in composite solid rocket propellants. The new materials are mechanically activated nanothermites comprising of nano‐powders of aluminum as the fuel as well as oxides of copper, iron, molybdenum, or nickel as the oxidizer. The obtained RNCs were characterized using X‐ray diffraction, scanning electron microscopy, and laser diffraction particle size analyzer. The obtained RNCs were used for preparation of modified composite solid rocket propellants (CSRPs). Burning rate, thermal decomposition behavior, heat of combustion, sensitivity, and mechanical properties of CSRPs were determined. The results showed increases in the combustion energy and the burning rate of the modified propellants were achieved, and that RNCs can be considered to be promising multi‐function additives for composite solid rocket propellants. In addition, the mechanical properties and sensitivities of the modified propellants are within the desired range.  相似文献   

16.
Large uncertainty among the measured uptake coefficients of O(3) on soot highlights the importance of the sources and chemical structures of soot samples in this reaction. Soot samples with different microstructures were prepared by combusting n-hexane under controlled conditions. Their reactivities to O(3) were further investigated using in situ Raman spectroscopy. The fuel∕oxygen ratio in the combustion experiments not only affected the diameter of the primary particles, but also influenced the micro-chemical structure of soot. Average diameters of soot particles decreased with the decreasing fuel∕oxygen ratio. Compared to the "fuel-rich" flame soot, the "fuel-lean" flame soot showed lower structural uniformity with higher disordered carbon content at the graphene layer edges (D1 band) and the surface graphene layers (D2 band) and the amorphous carbon content (D3 band). This disordered carbon was identified as the reactive component for the ozonization of both the "fuel-rich" and "fuel-lean" flame soot samples. The kinetics study demonstrated that the disordered carbon at the surface graphene layers was more active than that at the graphene layer edges in one sample, and the reactivity of these two microstructures types to O(3) in the "fuel-rich" flame soot was higher than that in the "fuel-lean" flame soot.  相似文献   

17.
Boron nanotubes.     
A survey of novel classes of nanotubular materials based on boron is presented. Pure boron nanotubes are a consequence of a general Aufbau principle for boron clusters and solid boron phases, which postulates various novel boron materials besides the well-known bulk phases of boron based on boron icosahedra. Furthermore, several numerical studies suggest the existence of a large family of compound nanotubular materials derived from crystalline AlB2. We compare these novel boron-based nanotubular materials to standard nanotubular systems built from carbon, and point out a number of remarkable structural and electronic properties that make boron-based nanotubular materials an ideal component for composite nanodevices and extended nanotubular networks.  相似文献   

18.
甲基肼/四氧化二氮反应化学动力学模型构建及分析   总被引:1,自引:0,他引:1  
甲基肼(MMH)和四氧化二氮(NTO)是常用的液体火箭发动机推进剂,但目前对其反应机理的研究还十分有限.本文首先构建了一个包含23种组分和20个基元反应的MMH/NTO反应动力学模型;对MMH/NTO自燃着火过程进行的验证计算表明,该机理能够合理地描述MMH/NTO的自燃温升过程,准确预测反应物系统的着火延迟时间及平衡温度,并能合理地反映MMH/NTO反应物系统着火延迟时间对反应初始压力以及氧燃比的依赖关系;通过灵敏度分析方法指出了影响MMH/NTO着火过程的关键反应.模拟分析了在不同压力和氧燃比条件下MMH/NTO系统的自燃温升过程,结果表明,随着压力的升高,系统着火延迟时间变短,平衡温度升高;在一定范围内增大氧燃比,着火延迟时间变长,平衡温度先升高后减小.  相似文献   

19.

As a clean and sustainable energy source, hydrogen is widely considered as an engine fuel by top researchers. In view of the fact that the uneven fuel mixture of diesel fuel deteriorated the combustion and emissions process, it is expected to adopt diesel and hydrogen dual-fuel combustion technology to optimize combustion and heat release of diesel engine. In this study, experiments are carried out on a diesel engine and the combustion characteristics of the engine with different hydrogen ratios (RH) are compared. It has been found that hydrogen addition is conducive to accelerate the heat release rate and improve the thermal efficiency. Specifically, compared with pure diesel conditions, the peak pressure increased by 7.7% and the cumulative heat release rate increased by 3.7% under the condition of RH of 20%. Moreover, although the effect on the ignition delay period is not clear, the higher RH brings about earlier heat release center and more cumulative heat release while enhancing the heat release of premixed combustion reducing the diffusion combustion and post-combustion.

  相似文献   

20.
There is much interest in determining the influence of molecular structure on the rate of combustion of hydrocarbons; the C7H16 isomers of heptane have been selected here as they exemplify all the different structural elements present in aliphatic, noncyclic hydrocarbons. With the exception of n‐heptane itself, no autoignition studies have been carried out to date on the other isomers of heptane at high temperatures. Therefore, ignition delay times were measured for the oxidation of four isomers—n‐heptane, 2,2‐dimethylpentane, 2,3‐dimethylpentane, and 2,2,3‐trimethylbutane—under stoichiometric conditions at a reflected shock pressure of 2 atm, within the temperature range of 1150–1650 K. Measurements under identical conditions reveal that they all have essentially the same ignition delay time; this confirms earlier theoretical predictions based purely on detailed chemical kinetic modeling. The variation of ignition delay times for n‐heptane with changing oxygen concentrations and reflected shock pressure was determined and shown to follow expected trends. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 728–736, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号