首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural and electronic properties of hydroxyanthraquinone derivatives in rhubarb, namely, chrysophanol, emodin, physcion, aloe‐emodin, rhein, and their radicals were investigated at density functional level. The bifurcated hydrogen bond property of the studied structures was investigated using the atoms in molecules theory. It turned out that the presence of the dihydroxy functionality increases the radical stability through hydrogen bonds formation and favors hydrogen atom abstraction. Bond dissociation energy and ionization potential were also determined to know if the radical scavenging activity of these compounds proceeds via an H‐atom or an electron‐transfer mechanism. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

2.
A new approach to hydrogen production from water is described. This simple method is based on carbon dioxide-mediated water decomposition under UV radiation. The water contained dissolved sodium hydroxide, and the solution was saturated with gaseous carbon dioxide. During saturation, the pH decreased from about 11.5 to 7–8. The formed bicarbonate and carbonate ions acted as scavengers for hydroxyl radicals, preventing the recombination of hydroxyl and hydrogen radicals and prioritizing hydrogen gas formation. In the presented method, not yet reported in the literature, hydrogen production is combined with carbon dioxide. For the best system with alkaline water (0.2 m NaOH) saturated with CO2 under UV-C, the hydrogen production amounted to 0.6 μmol h−1 during 24 h of radiation.  相似文献   

3.
Car-Parrinello molecular dynamics simulations of a hydroxyl radical in liquid water have been performed. Structural and dynamical properties of the solvated structure have been studied in details. The partial atom-atom radial distribution functions for the hydrated hydroxyl do not show drastic differences with the radial distribution functions for liquid water. The OH is found to be a more active hydrogen bond donor and acceptor than the water molecule, but the accepted hydrogen bonds are much weaker than for the hydroxide OH- ion. The first solvation shell of the OH is less structured than the water's one and contains a considerable fraction of water molecules that are not hydrogen bonded to the hydroxyl. Part of them are found to come closer to the solvated radical than the hydrogen bonded molecules do. The lifetime of the hydrogen bonds accepted by the hydroxyl is found to be shorter than the hydrogen bond lifetime in water. A hydrogen transfer between a water molecule and the OH radical has been observed, though it is a much rarer event than a proton transfer between water and an OH- ion. The velocity autocorrelation power spectrum of the hydroxyl hydrogen shows the properties both of the OH radical in clusters and of the OH- ion in liquid.  相似文献   

4.
High-level ab initio electronic structure calculations have been carried out with respect to the intermolecular hydrogen-transfer reaction HCOOH+.OH-->HCOO.+H(2)O and the intramolecular hydrogen-transfer reaction .OOCH2OH-->HOOCH(2)O.. In both cases we found that the hydrogen atom transfer can take place via two different transition structures. The lowest energy transition structure involves a proton transfer coupled to an electron transfer from the ROH species to the radical, whereas the higher energy transition structure corresponds to the conventional radical hydrogen atom abstraction. An analysis of the atomic spin population, computed within the framework of the topological theory of atoms in molecules, suggests that the triplet repulsion between the unpaired electrons located on the oxygen atoms that undergo hydrogen exchange must be much higher in the transition structure for the radical hydrogen abstraction than that for the proton-coupled electron-transfer mechanism. It is suggested that, in the gas phase, hydrogen atom transfer from the OH group to oxygen-centered radicals occurs by the proton-coupled electron-transfer mechanism when this pathway is accessible.  相似文献   

5.
Antioxidants remain interesting molecules of choice for suppression of the toxic effects of free radicals in foods and human systems. The current practice involves the use of mainly synthetic molecules as potent antioxidant agents. However, due to the potential negative impact on human health, there is an intensive effort within the research community to develop natural alternatives with similar antioxidant efficacy but without the negative side effects of synthetic molecules. Still, the successful development of new molecules depends on the use of reliable chemical or cell culture assays to screen antioxidant properties. Chemical antioxidant assays include the determination of scavenging ability against free radicals such as DPPH, superoxide anion radicals, hydroxyl radicals, hydrogen peroxide, and nitric oxide. Other antioxidant tests include the ability of compounds to bind and sequester prooxidant metal cations, reduce ferric iron, and attenuate the rate of lipid oxidation. Ex vivo tests utilize cell cultures to confirm entry of the molecules into cells and the ability to quench synthetic intracellular free radicals or to stimulate the increased biosynthesis of endogenous antioxidants. In order to assist researchers in their choice of antioxidant evaluation methods, this review presents background scientific information on some of the most commonly used antioxidant assays with a comparative discussion of the relevance of published literature data to food science and human nutrition applications.  相似文献   

6.
The conformational potential energy surfaces for mono- and difluoromethyl formate have been determined by using a modified G2(MP2) level of calculations. The structures and vibrational frequencies for the conformers of mono- and difluoromethyl formate have been reported. The hydrogen abstraction reaction channels between these two formates and OH radicals have been studied at the same level of theory. Using the standard transition state theory and taking into account the effect of tunneling across the reaction barrier, we have estimated the rate constant for hydrogen abstraction by OH radical. The effect of successive fluorine substitution for methyl hydrogen on the conformational stability and on the hydrogen abstraction rate has been analyzed.  相似文献   

7.
A rapid and solvent free substitution reaction of a fluorine atom in perfluorooctane sulfonyl fluoride (PFOSF) with a hydroxyl radical is reported. Under irradiation of ultraviolet laser on semiconductor nanoparticles or metal surfaces, hydroxyl radicals can be generated through hole oxidization. Among all fluorine atoms of PFOSF, highly active hydroxyl radicals specifically substitute the fluorine of sulfonyl fluoride functional group. Resultant perfluorooctane sulfonic acid is further ionized through capture of photo-generated electrons that switch the neutral molecules to negatively charged odd electron hypervalent ions. The unpaired electron subsequently initiates α O-H bond cleavage and produces perfluorooctane sulfonate negative ions. Hydroxyl radical substitution and molecular dissociation of PFOSF have been confirmed by masses with high accuracy and resolution. It has been applied to direct mass spectrometric imaging of PFOSF adsorbed on surfaces of plant leaves.  相似文献   

8.
The photochemical formation rates of hydroxyl radicals (OH radicals) in river water and seawater were determined by a simple, rapid and sensitive benzene probe method, in which phenol formed by the reaction between benzene and photochemically-generated OH radicals was analyzed by on-line preconcentration HPLC. The OH radical formation rates from well-known OH radical sources, such as nitrate, nitrite and hydrogen peroxide, were in good agreement with those reported previously. River water samples containing high concentrations of nitrate and nitrite were found to show high OH radical formation rates. Ten to 80% of the OH radical formation in river water and seawater was due to the photolysis of nitrate and nitrite, but OH radical formation from hydrogen peroxide was negligible. The OH radical formation from unknown sources other than nitrate, nitrite and hydrogen peroxide was strongly correlated to the amount of fluorescent matter.  相似文献   

9.
A coumarin-methyl-β-cyclodextrin (CCA-MCD) was synthesised. Fluorescence studies showed that CCA-MCD could successfully sense hydroxyl radicals (√OH) in water and it had a specific fluorescence response to √OH over other free radicals. Further study showed that it could monitor intracellular √OH as well. These findings suggest that CCA-MCD can be used as a cell-permeable fluorescence sensor to study the function of √OH in biological processes.  相似文献   

10.
Phenol derivatives are distinguished as successful free radical scavengers. We present a detailed analysis of hydroxyl hydrogen abstraction from hydroquinone by hydroxyl and hydroperoxyl radical with emphasis on changes that take place in the vicinity of the transition state. Quantum theory of atoms in molecules is employed to elucidate the sequence of positive and negative charge transfer by studying selected properties of the three key atoms (the transferring hydrogen, the donor atom, and the acceptor atom) along intrinsic reaction path. The presented results imply that in both reactions, which are examples of proton coupled electron transfer, proton, and electron get simultaneously transferred to the radical oxygen atom. The fact that the hydrogen's charge and volume do not monotonously change in the vicinity of the transition state in the product valley results from the adjacency of the proton and the electron to the donor and the acceptor oxygen atoms. Obtaining a detailed understanding of mechanisms by which free radicals are disarmed is of paramount importance given the effects of those highly reactive species on biological systems. A comprehensive analysis of hydroxyl hydrogen abstraction from hydroquinone by hydroxyl and hydroperoxyl radicals, based on changes of selected electronic properties of the three most relevant atoms (hydrogen donor, hydrogen acceptor, and the hydrogen itself), along the reaction coordinate, can be obtained by first‐principles calculations.  相似文献   

11.
The autoxidation of methyl linoleate in benzene at 37 degrees C by peroxyl radicals was found to generate hydroxyl radicals (.OH) from a secondary oxidation mechanism. The yield of hydroxyl radicals (approximately 2%) was determined by trapping these reactive radicals with benzene to give phenol. We propose that alphaC-H hydrogen abstraction from lipid hydroperoxides, the main autoxidation products, is the source of hydroxyl radicals.  相似文献   

12.
An O-methylated analog of protonated phenazine-di-N-oxide radical anion abstracts hydrogen from primary and secondary alcohols in a slow (k 1 < 500 M−1 s−1) bimolecular reaction. No kinetic evidence has been found for the unimolecular release of free methoxyl radicals through the homolytic N-OMe bond cleavage in these species. DFT calculations at the UB3LYP 6-31G(d) level indicate that protonated and O-alkylated radical anions of pyrazine, quinoxaline and phenazine di-N-oxides are close analogues of aromatic nitroxyl radicals with the highest spin density localized on the oxygen and nitrogen of the nitrone moiety.  相似文献   

13.
Classical molecular dynamics simulations with many-body potentials were carried out to quantitatively determine the effect of NaCl salt concentration on the aqueous solvation and surface concentration of hydroxyl radicals. The potential of mean force technique was used to track the incremental free energy of the hydroxyl radical from the vapor, crossing the air-water interface into the aqueous bulk. Results showed increased NaCl salt concentration significantly enhanced hydroxyl radical solvation, which should significantly increase its accommodation on water droplets. This has been experimentally observed for ozone aqueous accommodation with increased NaI concentration, but, to our knowledge, no experimental study has probed this for hydroxyl radicals. The origin for this effect was found to be very favorable hydroxyl radical-chloride ion interactions, being stronger than those for water-chloride.  相似文献   

14.
The chemistry of oxygen, hydrogen, water, and other species containing both oxygen and hydrogen atoms on the anatase TiO2 (001) surface is investigated by DFT. The adsorption energy of atoms and radicals depends appreciably on the position and mode of adsorption, and on the coverage. Molecular hydrogen and oxygen interact weakly with the clean surface. However, H2O dissociates spontaneously to give two nonidentical hydroxyl groups, and this provides a model for hydroxylation of TiO2 surfaces by water. The mobility of the hydroxyl groups created by water splitting is initially impeded by a diffusion barrier close to 1 eV. The O2 adsorption energy increases significantly in the presence of H atoms. Hydroperoxy (OOH) formation is feasible if at least two H atoms are present in the direct vicinity of O2. In the adsorbed OOH, the O? O bond is considerably lengthened and thus weakened.  相似文献   

15.
从过氧化氢(H2O2)的原位生成技术角度总结了近年来利用原位合成H2O2处理水中污染物的研究,分析了当前可充当氢源材料的种类及不同的氢源材料对于提高H2O2产率的影响,以及不同的催化剂材料和催化反应环境提高H2O2利用率对污染处理效果的影响因素,并对原位合成H2O2在水处理领域中面临的挑战和发展前景做了展望,从而为该技术的大规模应用提供指导和借鉴。  相似文献   

16.
To directly compare the reactivity of positively charged carbon-centered aromatic σ-radicals toward methanol in solution and in the gas phase, the 2-, 3-, and 4-dehydropyridinium cations (distonic isomers of the pyridine radical cation) were generated by ultraviolet photolysis of the corresponding iodo precursors in a mixture of water and methanol at varying pH. The reaction mixtures were analyzed by using liquid chromatography/mass spectrometry. Hydrogen atom abstraction was the only reaction observed for the 3- and 4-dehydropyridinium cations (and pyridines) in solution. This also was the major reaction observed earlier in the gas phase. Depending on the pH, the hydrogen atom can be abstracted from different molecules (i.e., methanol or water) and from different sites (in methanol) by the 3- and 4-dehydropyridinium cations/pyridines in solution. In the pH range 1-4, the methyl group of methanol is the main hydrogen atom donor site for both 3- and 4-dehydropyridinium cations (just like in the gas phase). At higher pH, the hydroxyl groups of water and methanol also act as hydrogen atom donors. This finding is rationalized by a greater abundance of the unprotonated radicals that preferentially abstract hydrogen atoms from the polar hydroxyl groups. The percentage yield of hydrogen atom abstraction by these radicals was found to increase with lowering the pH in the pH range 1.0-3.2. This pH effect is rationalized by polar effects: the lower the pH, the greater the fraction of protonated (more polar) radicals in the solution. This finding is consistent with previous results obtained in the gas phase and suggests that gas-phase studies can be used to predict solution reactivity, but only as long as the same reactive species is studied in both experiments. This was found not to be the case for the 2-iodopyridinium cation. Photolysis of this precursor in solution resulted in the formation of two major addition products, 2-hydroxy- and 2-methoxypyridinium cations, in addition to the hydrogen atom abstraction product. These addition products were not observed in the earlier gas-phase studies on 2-dehydropyridinium cation. Their observation in solution is explained by the formation of another reactive intermediate, the 2-pyridylcation, upon photolysis of 2-iodopyridinium cation (and 2-iodopyridine). The same intermediate was observed in the gas phase but it was removed before examining the reactions of the desired radical, 2-dehydropyridinium cation (which cannot be done in solution).  相似文献   

17.
High-performance capillary electrophoresis (CE) with electrochemical detection (ED) was employed to determine hydroxyl radicals in the Fenton reaction. Hydroxyl radicals can react with salicylic acid to produce 2,3-dihydroxy benzoic acid and 2,5-dihydroxy benzoic acid, which can be analyzed by CE-ED. Based on this principle, hydroxyl radicals were determined indirectly. In a 20 mmol/L phosphate running buffer (pH 7.4), 2,3-dihydroxy benzoic acid and 2,5-dihydroxy benzoic acid would elute simultaneously from the capillary within 6 min. As the working electrode, a 300 m diameter carbon-disk electrode exhibits good responses at +0.60 V (vs. SCE) for the two analytes. Peak currents of the two analytes are additive. Excellent linearity was obtained in the concentration range from 1.0×10-3 mol/L to 5.0×10-6 mol/L for 2,3-dihydroxy benzoic acid. The detection limit (S/N=3) was 2.0×10-6 mol/L. This method was successfully applied for studying hydroxyl radical scavenging activities of Chinese herbs. It is testified that Apocynum Venetum L., Jinkgo bibola L., Morus alba L. and Rhododendron dauricum L. have strong hydroxyl radical scavenging activities.  相似文献   

18.
As the hydroxyl (OH) and perhydroxyl (OOH) radicals are known to play important roles in biological systems, their reactions with cytosine and thymine were studied. Addition reactions of these radicals at different sites of cytosine and thymine, and hydrogen abstraction reactions by each of the two radicals from the different sites of the two molecules were studied at the B3LYP/6‐31G(d,p), B3LYP/AUG‐cc‐pVDZ and BHandHLYP/AUG‐cc‐pVDZ levels of density functional theory. Effect of solvation in aqueous media on the reactions was studied at all these levels of theory using single point energy calculations using the polarizable continuum model. The present study shows that whereas the OH radical would abstract H atoms from the various sites of cytosine and thymine efficiently, the OOH radical would have poor reactivity in this regard. The OH radical is also predicted to be much more reactive than the OOH radical with regard to addition reactions at the C5 and C6 sites of both thymine and cytosine, though the OOH radical is also predicted to have significant reactivity in this respect. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
The hydrogen abstraction reactions between chlorine‐substituted acetaldehydes and OH radicals have been investigated by using ab initio molecular orbital theory. Equilibrium geometries and transition‐state structures have been optimized at the (U)MP2/6‐311G(d,p) level. Activation barriers and heats of reaction for different reaction channels have been estimated from the single‐point calculations at the (U)MP2/6‐311G(2df,2p) level. Three, two, and one hydrogen abstraction channel have been found for the mono‐, di‐, and trichloroacetaldehyde, respectively. At a higher temperature region, hydrogen abstraction from the formyl group is found to be the major reaction channel for all the three chloroacetaldehydes. The effect of halogen substitution on reactivity toward hydrogen abstraction has been discussed. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1509–1521, 2001  相似文献   

20.
报道了利用原位电子自旋共振(ESR)技术研究对二嗪N,N′-二氧化物光解的结果。研究结果表明,化合物5,6,7和8通过光还原过程从溶剂分子夺取氢原子分别生成稳定的自由基,记录出它们分辨良好的ESR谱。文中还讨论了对二嗪N,N′-二氧化物的光化学反应的自由基机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号