首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study a precise large deviation principle for a stationary regularly varying sequence of random variables. This principle extends the classical results of Nagaev (Theory Probab Appl 14:51–64, 193–208, 1969) and Nagaev (Ann Probab 7:745–789, 1979) for iid regularly varying sequences. The proof uses an idea of Jakubowski (Stoch Proc Appl 44:291–327, 1993; 68:1–20, 1997) in the context of central limit theorems with infinite variance stable limits. We illustrate the principle for stochastic volatility models, real valued functions of a Markov chain satisfying a polynomial drift condition and solutions of linear and non-linear stochastic recurrence equations.  相似文献   

2.
Based on the very recent work by Dang and Gao (Invers Probl 27:1–9, 2011) and Wang and Xu (J Inequal Appl, doi:10.1155/2010/102085, 2010), and inspired by Yao (Appl Math Comput 186:1551–1558, 2007), Noor (J Math Anal Appl 251:217–229, 2000), and Xu (Invers Probl 22:2021–2034, 2006), we suggest a three-step KM-CQ-like method for solving the split common fixed-point problems in Hilbert spaces. Our results improve and develop previously discussed feasibility problem and related algorithms.  相似文献   

3.
We present the solution of a large class of homogeneous linear functional equations of higher order by using ideas from dynamical systems. A particularly simple example from this class is the functional equation $$f(x) = \frac{1}{2}f \left(\frac{x}{2}\right) + \frac{1}{2}f \left(\frac{x+1}{2}\right), \quad 0 < x < 1.$$ Equations such as these have found important applications in wavelet theory by Hilberdink (Aequa Math 61(1–2):179–189, 2001) where they are called dilation equations and are usually solved by Fourier methods by Daubechies (Comm Pure Appl Math 41(7):909–996, 1988) or iteration methods of Daubechies (SIAM J Math Anal 22(5):1388–1410, 1991). A recent result of Góra (Ergod Theory Dyn Syst 29(5):1549–1583, 2009) allows us to represent the solution as an infinite series that is determined by the dynamics of a map that is defined by the functional equation. In this problem the interplay between dynamical systems and solutions of functional equations is brought into sharp focus.  相似文献   

4.
John Holte (Am. Math. Mon. 104:138?C149, 1997) introduced a family of ??amazing matrices?? which give the transition probabilities of ??carries?? when adding a list of numbers. It was subsequently shown that these same matrices arise in the combinatorics of the Veronese embedding of commutative algebra (Brenti and Welker, Adv. Appl. Math. 42:545?C556, 2009; Diaconis and Fulman, Am. Math. Mon. 116:788?C803, 2009; Adv. Appl. Math. 43:176?C196, 2009) and in the analysis of riffle shuffling (Diaconis and Fulman, Am. Math. Mon. 116:788?C803, 2009; Adv. Appl. Math. 43:176?C196, 2009). We find that the left eigenvectors of these matrices form the Foulkes character table of the symmetric group and the right eigenvectors are the Eulerian idempotents introduced by Loday (Cyclic Homology, 1992) in work on Hochschild homology. The connections give new closed formulae for Foulkes characters and allow explicit computation of natural correlation functions in the original carries problem.  相似文献   

5.
We generalize and extend results of the series of papers by Greenbaum and Strako? (IMA Vol Math Appl 60:95–118, 1994), Greenbaum et al. (SIAM J Matrix Anal Appl 17(3):465–469, 1996), Arioli et al. (BIT 38(4):636–643, 1998) and Duintjer Tebbens and Meurant (SIAM J Matrix Anal Appl 33(3):958–978, 2012). They show how to construct matrices with right-hand sides generating a prescribed GMRES residual norm convergence curve as well as prescribed Ritz values in all iterations, including the eigenvalues, and give parametrizations of the entire class of matrices and right-hand sides with these properties. These results assumed that the underlying Arnoldi orthogonalization processes are breakdown-free and hence considered non-derogatory matrices only. We extend the results with parametrizations of classes of general nonsingular matrices with right-hand sides allowing the early termination case and also give analogues for the early termination case of other results related to the theory developed in the papers mentioned above.  相似文献   

6.
We establish a new theorem of existence (and uniqueness) of solutions to the Navier-Stokes initial boundary value problem in exterior domains. No requirement is made on the convergence at infinity of the kinetic field and of the pressure field. These solutions are called non-decaying solutions. The first results on this topic dates back about 40 years ago see the references (Galdi and Rionero in Ann. Mat. Pures Appl. 108:361–366, 1976, Arch. Ration. Mech. Anal. 62:295–301, 1976, Arch. Ration. Mech. Anal. 69:37–52, 1979, Pac. J. Math. 104:77–83, 1980; Knightly in SIAM J. Math. Anal. 3:506–511, 1972). In the articles Galdi and Rionero (Ann. Mat. Pures Appl. 108:361–366, 1976, Arch. Ration. Mech. Anal. 62:295–301, 1976, Arch. Ration. Mech. Anal. 69:37–52, 1979, Pac. J. Math. 104:77–83, 1980) it was introduced the so called weight function method to study the uniqueness of solutions. More recently, the problem has been considered again by several authors (see Galdi et al. in J. Math. Fluid Mech. 14:633–652, 2012, Quad. Mat. 4:27–68, 1999, Nonlinear Anal. 47:4151–4156, 2001; Kato in Arch. Ration. Mech. Anal. 169:159–175, 2003; Kukavica and Vicol in J. Dyn. Differ. Equ. 20:719–732, 2008; Maremonti in Mat. Ves. 61:81–91, 2009, Appl. Anal. 90:125–139, 2011).  相似文献   

7.
We study a class of Steffensen-type algorithm for solving nonsmooth variational inclusions in Banach spaces. We provide a local convergence analysis under ω-conditioned divided difference, and the Aubin continuity property. This work on the one hand extends the results on local convergence of Steffensen’s method related to the resolution of nonlinear equations (see Amat and Busquier in Comput. Math. Appl. 49:13–22, 2005; J. Math. Anal. Appl. 324:1084–1092, 2006; Argyros in Southwest J. Pure Appl. Math. 1:23–29, 1997; Nonlinear Anal. 62:179–194, 2005; J. Math. Anal. Appl. 322:146–157, 2006; Rev. Colomb. Math. 40:65–73, 2006; Computational Theory of Iterative Methods, 2007). On the other hand our approach improves the ratio of convergence and enlarges the convergence ball under weaker hypotheses than one given in Hilout (Commun. Appl. Nonlinear Anal. 14:27–34, 2007).  相似文献   

8.
In this paper we prove existence and multiplicity of positive and sign-changing solutions to the pure critical exponent problem for the $p$ -Laplacian operator with Dirichlet boundary conditions on a bounded domain having nontrivial topology and discrete symmetry. Pioneering works related to the case $p=2$ are Brezis and Nirenberg (Comm Pure Appl Math 36, 437–477, 1983), Coron (C R Acad Sci Paris Sr I Math 299, 209–212, 1984), and Bahri and Coron (Comm. Pure Appl. Math. 41, 253–294, 1988). A global compactness analysis is given for the Palais-Smale sequences in the presence of symmetries.  相似文献   

9.
Given two bounded linear operators $P$ and $Q$ on a Banach space the formula for the Drazin inverse of $P+Q$ is given, under the assumptions $P^2 Q+PQ^2=0$ and $P^3 Q=PQ^3=0$ . In particular, some recent results arising in Drazin (Am Math Mon 65:506–514, 1958), Hartwig et al. (Linear Algebra Appl 322:207–217, 2001) and Castro-González et al. (J Math Anal Appl 350:207–215, 2009) are extended.  相似文献   

10.
In this paper, two kinds of parametric generalized vector equilibrium problems in normed spaces are studied. The sufficient conditions for the continuity of the solution mappings to the two kinds of parametric generalized vector equilibrium problems are established under suitable conditions. The results presented in this paper extend and improve some main results in Chen and Gong (Pac J Optim 3:511–520, 2010), Chen and Li (Pac J Optim 6:141–152, 2010), Chen et al. (J Glob Optim 45:309–318, 2009), Cheng and Zhu (J Glob Optim 32:543–550, 2005), Gong (J Optim Theory Appl 139:35–46, 2008), Li and Fang (J Optim Theory Appl 147:507–515, 2010), Li et al. (Bull Aust Math Soc 81:85–95, 2010) and Peng et al. (J Optim Theory Appl 152(1):256–264, 2011).  相似文献   

11.
We provide a new semilocal convergence analysis of the Gauss–Newton method (GNM) for solving nonlinear equation in the Euclidean space. Using a combination of center-Lipschitz, Lipschitz conditions, and our new idea of recurrent functions, we provide under the same or weaker hypotheses than before (Ben-Israel, J. Math. Anal. Appl. 15:243–252, 1966; Chen and Nashed, Numer. Math. 66:235–257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1–10, 1979; Guo, J. Comput. Math. 25:231–242, 2007; Häußler, Numer. Math. 48:119–125, 1986; Hu et al., J. Comput. Appl. Math. 219:110–122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982), a finer convergence analysis. The results can be extended in case outer or generalized inverses are used. Numerical examples are also provided to show that our results apply, where others fail (Ben-Israel, J. Math. Anal. Appl. 15:243–252, 1966; Chen and Nashed, Numer. Math. 66:235–257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1–10, 1979; Guo, J. Comput. Math. 25:231–242, 2007; Häußler, Numer. Math. 48:119–125, 1986; Hu et al., J. Comput. Appl. Math. 219:110–122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982).  相似文献   

12.
This paper concerns an optimal stopping problem driven by the running maximum of a spectrally negative Lévy process X. More precisely, we are interested in capped versions of the American lookback optimal stopping problem (Gapeev in J. Appl. Probab. 44:713–731, 2007; Guo and Shepp in J. Appl. Probab. 38:647–658, 2001; Pedersen in J. Appl. Probab. 37:972–983, 2000), which has its origins in mathematical finance, and provide semi-explicit solutions in terms of scale functions. The optimal stopping boundary is characterised by an ordinary first-order differential equation involving scale functions and, in particular, changes according to the path variation of X. Furthermore, we will link these capped problems to Peskir’s maximality principle (Peskir in Ann. Probab. 26:1614–1640, 1998).  相似文献   

13.
We show symmetry properties of the numerical range of positive operators on Hilbert lattices. These results generalise the respective properties for positive matrices shown in Li et al. (Linear Algebra Appl 350:1–23, 2002) and Maroulas et al. (Linear Algebra Appl 348:49–62, 2002). Similar assertions are also valid for the block numerical range of positive operators.  相似文献   

14.
In the paper we prove that any nonconvex quadratic problem over some set ${K\subset \mathbb {R}^n}$ with additional linear and binary constraints can be rewritten as a linear problem over the cone, dual to the cone of K-semidefinite matrices. We show that when K is defined by one quadratic constraint or by one concave quadratic constraint and one linear inequality, then the resulting K-semidefinite problem is actually a semidefinite programming problem. This generalizes results obtained by Sturm and Zhang (Math Oper Res 28:246–267, 2003). Our result also generalizes the well-known completely positive representation result from Burer (Math Program 120:479–495, 2009), which is actually a special instance of our result with ${K=\mathbb{R}^n_{+}}$ .  相似文献   

15.
An augmented Lagrangian approach for sparse principal component analysis   总被引:1,自引:0,他引:1  
Principal component analysis (PCA) is a widely used technique for data analysis and dimension reduction with numerous applications in science and engineering. However, the standard PCA suffers from the fact that the principal components (PCs) are usually linear combinations of all the original variables, and it is thus often difficult to interpret the PCs. To alleviate this drawback, various sparse PCA approaches were proposed in the literature (Cadima and Jolliffe in J Appl Stat 22:203–214, 1995; d’Aspremont et?al. in J Mach Learn Res 9:1269–1294, 2008; d’Aspremont et?al. SIAM Rev 49:434–448, 2007; Jolliffe in J Appl Stat 22:29–35, 1995; Journée et?al. in J Mach Learn Res 11:517–553, 2010; Jolliffe et?al. in J Comput Graph Stat 12:531–547, 2003; Moghaddam et?al. in Advances in neural information processing systems 18:915–922, MIT Press, Cambridge, 2006; Shen and Huang in J Multivar Anal 99(6):1015–1034, 2008; Zou et?al. in J Comput Graph Stat 15(2):265–286, 2006). Despite success in achieving sparsity, some important properties enjoyed by the standard PCA are lost in these methods such as uncorrelation of PCs and orthogonality of loading vectors. Also, the total explained variance that they attempt to maximize can be too optimistic. In this paper we propose a new formulation for sparse PCA, aiming at finding sparse and nearly uncorrelated PCs with orthogonal loading vectors while explaining as much of the total variance as possible. We also develop a novel augmented Lagrangian method for solving a class of nonsmooth constrained optimization problems, which is well suited for our formulation of sparse PCA. We show that it converges to a feasible point, and moreover under some regularity assumptions, it converges to a stationary point. Additionally, we propose two nonmonotone gradient methods for solving the augmented Lagrangian subproblems, and establish their global and local convergence. Finally, we compare our sparse PCA approach with several existing methods on synthetic (Zou et?al. in J Comput Graph Stat 15(2):265–286, 2006), Pitprops (Jeffers in Appl Stat 16:225–236, 1967), and gene expression data (Chin et?al in Cancer Cell 10:529C–541C, 2006), respectively. The computational results demonstrate that the sparse PCs produced by our approach substantially outperform those by other methods in terms of total explained variance, correlation of PCs, and orthogonality of loading vectors. Moreover, the experiments on random data show that our method is capable of solving large-scale problems within a reasonable amount of time.  相似文献   

16.
We compare two established and a new method for the calculation of spectral bounds for Hessian matrices on hyperrectangles by applying them to a large collection of 1,522 objective and constraint functions extracted from benchmark global optimization problems. Both the tightness of the spectral bounds and the computational effort of the three methods, which apply to $C^2$ functions ${\varphi }:\mathbb{R }^n\rightarrow \mathbb{R }$ that can be written as codelists, are assessed. Specifically, we compare eigenvalue bounds obtained with the interval variant of Gershgorin’s circle criterion (Adjiman et al. in Comput Chem Eng 22(9):1137–1158, 1998; Gershgorin in Izv. Akad. Nauk SSSR, Ser. fizmat. 6:749–754, 1931), Hertz (IEEE Trans Autom Control 37:532–535, 1992) and Rohn’s (SIAM J Matrix Anal Appl 15(1):175–184, 1994) method for tight bounds of interval matrices, and a recently proposed Hessian matrix eigenvalue arithmetic (Mönnigmann in SIAM J. Matrix Anal. Appl. 32(4): 1351–1366, 2011), which deliberately avoids the computation of interval Hessians. The eigenvalue arithmetic provides tighter, as tight, and less tight bounds than the interval variant of Gershgorin’s circle criterion in about 15, 61, and 24 % of the examples, respectively. Hertz and Rohn’s method results in bounds that are always as tight as or tighter than those from Gershgorin’s circle criterion, and as tight as or tighter than those from the eigenvalue arithmetic in 96 % of the cases. In 4 % of the examples, the eigenvalue arithmetic results in tighter bounds than Hertz and Rohn’s method. This result is surprising, since Hertz and Rohn’s method provides tight bounds for interval matrices. The eigenvalue arithmetic provides tighter bounds in these cases, since it is not based on interval matrices.  相似文献   

17.
In a previous paper (Beyn and Lust in Numer Math 113:357–375, 2009) we suggested a numerical method for computing all Lyapunov exponents of a dynamical system by spatial integration with respect to an ergodic measure. The method extended an earlier approach of Aston and Dellnitz (Comput Methods Appl Mech Eng 170:223–237, 1999) for the largest Lyapunov exponent by integrating the diagonal entries from the $QR$ -decomposition of the Jacobian for an iterated map. In this paper we provide an asymptotic error analysis of the method for the case in which all Lyapunov exponents are simple. We employ Oseledec multiplicative ergodic theorem and impose certain hyperbolicity conditions on the invariant subspaces that belong to neighboring exponents. The resulting error expansion shows that one step of extrapolation is enough to obtain exponential decay of errors.  相似文献   

18.
We present new sufficient conditions for the semilocal convergence of Newton’s method to a locally unique solution of an equation in a Banach space setting. Upper bounds on the limit points of majorizing sequences are also given. Numerical examples are provided, where our new results compare favorably to earlier ones such as Argyros (J Math Anal Appl 298:374–397, 2004), Argyros and Hilout (J Comput Appl Math 234:2993-3006, 2010, 2011), Ortega and Rheinboldt (1970) and Potra and Pták (1984).  相似文献   

19.
The method (Martynyuk and Pivovarchik, Inverse Probl. 26(3):035011, 2010) of recovering the potential of the Sturm–Liouville equation on a half of the interval by the spectrum of a boundary value problem and by the restriction of the potential onto the other half of the interval is used for treating the missing eigenvalue problem (Trans. Am. Math. Soc. 352:2765–3789, 2000, J. R. Astr. Soc. 62:41–48, 1980, J. Math. Pures Appl. 91:468–475, 2009, J. Math. Soc. Japan 38:39–65, 1986). The latter arises in the case of the half-inverse (Hochstadt–Lieberman) problem with Robin boundary conditions and lies in the fact that in many cases all the eigenvalues but one are needed to recover the potential and the Robin condition at one of the ends.  相似文献   

20.
We establish a connection between optimal transport theory (see Villani in Topics in optimal transportation. Graduate studies in mathematics, vol. 58, AMS, Providence, 2003, for instance) and classical convection theory for geophysical flows (Pedlosky, in Geophysical fluid dynamics, Springer, New York, 1979). Our starting point is the model designed few years ago by Angenent, Haker, and Tannenbaum (SIAM J. Math. Anal. 35:61–97, 2003) to solve some optimal transport problems. This model can be seen as a generalization of the Darcy–Boussinesq equations, which is a degenerate version of the Navier–Stokes–Boussinesq (NSB) equations. In a unified framework, we relate different variants of the NSB equations (in particular what we call the generalized hydrostatic-Boussinesq equations) to various models involving optimal transport (and the related Monge–Ampère equation, Brenier in Commun. Pure Appl. Math. 64:375–417, 1991; Caffarelli in Commun. Pure Appl. Math. 45:1141–1151, 1992). This includes the 2D semi-geostrophic equations (Hoskins in Annual review of fluid mechanics, vol. 14, pp. 131–151, Palo Alto, 1982; Cullen et al. in SIAM J. Appl. Math. 51:20–31, 1991, Arch. Ration. Mech. Anal. 185:341–363, 2007; Benamou and Brenier in SIAM J. Appl. Math. 58:1450–1461, 1998; Loeper in SIAM J. Math. Anal. 38:795–823, 2006) and some fully nonlinear versions of the so-called high-field limit of the Vlasov–Poisson system (Nieto et al. in Arch. Ration. Mech. Anal. 158:29–59, 2001) and of the Keller–Segel for Chemotaxis (Keller and Segel in J. Theor. Biol. 30:225–234, 1971; Jäger and Luckhaus in Trans. Am. Math. Soc. 329:819–824, 1992; Chalub et al. in Mon. Math. 142:123–141, 2004). Mathematically speaking, we establish some existence theorems for local smooth, global smooth or global weak solutions of the different models. We also justify that the inertia terms can be rigorously neglected under appropriate scaling assumptions in the generalized Navier–Stokes–Boussinesq equations. Finally, we show how a “stringy” generalization of the AHT model can be related to the magnetic relaxation model studied by Arnold and Moffatt to obtain stationary solutions of the Euler equations with prescribed topology (see Arnold and Khesin in Topological methods in hydrodynamics. Applied mathematical sciences, vol. 125, Springer, Berlin, 1998; Moffatt in J. Fluid Mech. 159:359–378, 1985, Topological aspects of the dynamics of fluids and plasmas. NATO adv. sci. inst. ser. E, appl. sci., vol. 218, Kluwer, Dordrecht, 1992; Schonbek in Theory of the Navier–Stokes equations, Ser. adv. math. appl. sci., vol. 47, pp. 179–184, World Sci., Singapore, 1998; Vladimirov et al. in J. Fluid Mech. 390:127–150, 1999; Nishiyama in Bull. Inst. Math. Acad. Sin. (N.S.) 2:139–154, 2007).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号