首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Poly-L-histidine immobilized poly(glycidyl methacrylate) (PGMA) cryogel discs were used for the removal of heavy metal ions [Pb(II), Cd(II), Zn(II) and Cu(II)] from aqueous solutions. In the first step, PGMA cryogel discs were synthesized using glycidyl methacrylate (GMA) as a basic monomer and methylene bisacrylamide (MBAAm) as a cross linker in order to introduce active epoxy groups through the polymeric backbone. Then, the metal chelating groups are incorporated to cryogel discs by immobilizing poly-L-histidine (mol wt ≥ 5000) having poly-imidazole ring. The swelling test, fourier transform infrared spectroscopy and scanning electron microscopy were performed to characterize both the PGMA and poly-L-histidine immobilized PGMA [P-His@PGMA] cryogel discs. The effects of the metal ion concentration and pH on the adsorption capacity were studied. These parameters were varied between 3.0–6.0 and 10–800 mg/L for pH and metal ion concentration, respectively. The maximum adsorption capacity of heavy metal ions of P-His@PGMA cryogel discs were 6.9 mg/g for Pb(II), 6.4 mg/g for Cd(II), 5.6 mg/g for Cu(II) and 4.3 mg/g for > Zn(II). Desorption of heavy metal ions was studied with 0.1 M HNO3 solution. It was observed that cryogel discs could be recurrently used without important loss in the adsorption amount after five repetitive adsorption/desorption processes. Adsorption isotherms were fitted to Langmuir model and adsorption kinetics were suited to pseudo-second order model. Thermodynamic parameters (i.e. ΔH° ΔS°, ΔG°) were also calculated at different temperatures.  相似文献   

2.
For this work, we synthesized poly(N-isopropylacrylamide-acrylamide)-acrylic acid (poly(NIPAM-Am)-AAc) monolithic cryogel for a human serum albumin separation (HSA) from a protein mixture (human serum immunoglobulin, human serum albumin and lysozyme) and performed HSA adsorption studies using the cryogel to do continuous system experiments in a syringe column connected by a peristaltic pump. Poly(NIPAM-Am)-AAc with a pore size of 10–100 μm was produced by free radical polymerization that proceeded in an aqueous solution of monomers frozen inside a syringe column. The monolithic poly(NIPAM-Am)-AAc cryogel was characterized by performing swelling studies, FTIR and SEM that showed a swelling ratio of 6.2 g H2O/g dry cryogel. The maximum HSA adsorption by the cryogel was 42.5 mg/g polymer at pH 4.0 in a 50 mM acetate buffer. We also studied the effect of two different temperatures (25 and 40°C). The higher temperature increased the adsorption capacity of the cryogel. HSA molecules could be reversibly adsorbed and desorbed five times with the same poly(NIPAM-Am)-AAc cryogel without a noticeable loss of their HSA adsorption capacity. The synthesized cryogel was used to separate albumin from the protein mixture. Adsorbed albumin was eluted by changing the pH of the buffer (pH 7.0 and 25°C). Poly(NIPAM-Am)-AAc monolithic cryogel behaved as a cation exchange column because of its functional carboxylic group.  相似文献   

3.
Penicillin acylase (PA, EC 3.5.1.11) is used as a raw material in the production of semi-synthetic penicillins. Although there are many methods for PA purification, affinity chromatography is advantageous as it provides efficient one step purification. In this study, poly(2-hydroxyethyl methacrylate) based cryogel column containing hydrophobic N-methacryloyl-L-tryptophan (MATrp) functional monomer as a ligand was prepared. Interaction of MATrp with amino acids in PA structure is the basis of hydrophobic interaction chromatography in this study. PHEMA and PHEMATrp cryogel columns were characterized by surface area measurements, infrared spectroscopy, swelling tests, elemental analysis and scanning electron microscopy (SEM). Initial PA concentration, pH, effect of temperature, amount of ligand, flow rate, ionic strength and time on PA adsorption on PHEMATrp cryogel were investigated. Optimum pH was determined as 5.0 for PA adsorption and maximum adsorption capacity was obtained as 6.40 mg/g. It was observed that adsorption capacity increased with the increasing of temperature. Also, PA adsorption increased up to 0.25 M salt concentration and decreased in higher salt concentrations. Data obtained in this affinity system suggests that hydrophobic interactions are dominant. In the last stage of the study, PA was purified from Penicillium chrysogenum with 76.3% yield and 332.3 purification factor.  相似文献   

4.
The aim of this study is to prepare supermacroporous cryogels embedded with Cu(2+)-attached sporopollenin particles (Cu(2+)-ASP) having large surface area for high protein adsorption capacity. Supermacroporous poly(2-hydroxyethyl methacrylate) (PHEMA)-based monolithic cryogel column embedded with Cu(2+)-ASP was prepared by radical cryo-copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N,N'-methylene-bis-acrylamide (MBAAm) as cross-linker directly in a plastic syringe for affinity purification of human serum albumin (HSA). Firstly, Cu(2+) ions were attached to sporopollenin particles (SP), then the supermacroporous PHEMA cryogel with embedded Cu(2+)-ASP was produced by free radical polymerization using N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) as initiator/activator pair in an ice bath. Embedded particles (10 mg) in PHEMA-based cryogel column were used in the adsorption/desorption of HSA from aqueous solutions. Optimum conditions of adsorption experiments were performed at pH 8.0 phosphate buffer, with flow rate of 0.5 mL/min, and at 5°C. The maximum amount of HSA adsorption from aqueous solution was very high (677.4 mg/g SP) with initial concentration 6 mg/mL. It was observed that HSA could be repeatedly adsorbed and desorbed to the embedded Cu(2+)-ASP in PHEMA cryogel without significant loss of adsorption capacity.  相似文献   

5.
Supermacroporous poly(2-hydroxyethyl methacrylate-co-1,5-naphthalene bismaleimide) [poly(HEMA-co-NBMI)] monolithic cryogel column was prepared by free radical cryo-copolymerization of HEMA with NBMI as a hydrophobic functional comonomer and N,N′-methylene-bisacrylamide as cross-linker directly in a plastic syringe for adsorption of albumin. The monolithic cryogel contained a continuous polymeric matrix which has interconnected pores of 10–100 μm size. Poly(HEMA-co-NBMI) cryogel was characterized by swelling studies, FTIR and scanning electron microscopy. The equilibrium swelling degree of the poly(HEMA-co-NBMI) cryogel was 10.5 g of H2O/g dry cryogel. Poly(HEMA-co-NBMI) cryogel was used in the adsorption/desorption of IgG from aqueous solutions. The maximum amount of IgG adsorption from aqueous solution in phosphate buffer was 98.20 mg/g polymer at pH 7.0. The nonspecific adsorption of IgG onto plain poly(HEMA) cryogel was very low (2.79 g/g polymer). It was observed that IgG could be repeatedly adsorbed and desorbed with the poly(HEMA-co-NBMI) cryogel without significant loss of adsorption capacity.  相似文献   

6.
Poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) [poly(HEMA-GMA)] cryogel was synthesized by cryopolymerization technique at frozen temperature. Iminodiacetic acid (IDA) was then attached covalently to the cryogel as a chelating agent. Then, poly(HEMA-GMA)-IDA cryogel was chelated with Ni(II) ions and this novel metal affinity support was used for adsorption of urease from its aqueous solution. Urease adsorption experiments were carried out in a continuous system by using a peristaltic pump. Maximum urease adsorption onto poly(HEMA-GMA)-IDA-Ni(II) cryogel was found to be 11.30 mg/g cryogel at pH 5.0 acetate buffer and in 25 °C medium temperature. Urease adsorption capacity decreased with increasing ionic strength and increasing chromatographic flow rate. Adsorption kinetics of urease onto poly(HEMA-GMA)-IDA-Ni(II) cryogel was also investigated and it was found that Langmuir adsorption model is applicable for this adsorption study. This novel immobilized metal affinity chromatography support was used 10 times without any decrease at their adsorption capacity. It was also observed that urease enzyme was repeatedly adsorbed and desorbed without significant lost in enzymatic activity.  相似文献   

7.
Antibodies are used in many applications, especially as diagnostic and therapeutic agents. Among the various techniques used for the purification of antibodies, immunoaffinity chromatography is by far the most common. For this purpose, oriented immobilization of antibodies is an important step for the efficiency of purification step. In this study, Fc fragment‐imprinted poly(hydroxyethyl methacrylate) cryogel (MIP) was prepared for the oriented immobilization of anti‐hIgG for IgG purification from human plasma. Non‐imprinted poly(hydroxyethyl methacrylate) cryogel (NIP) was also prepared for random immobilization of anti‐hIgG to compare the adsorption capacities of oriented (MIP/anti‐hIgG) and random (NIP/anti‐hIgG) cryogel columns. The amount of immobilized anti‐hIgG was 19.8 mg/g for the NIP column and 23.7 mg/g for the MIP column. Although the amount of immobilized anti‐hIgG was almost the same for the NIP and MIP columns, IgG adsorption capacity was found to be three times higher than the NIP/anti‐hIgG column (29.7 mg/g) for the MIP/anti‐hIgG column (86.9 mg/g). Higher IgG adsorption capacity was observed from human plasma (up to 106.4 mg/g) with the MIP/anti‐hIgG cryogel column. Adsorbed IgG was eluted using 1.0 m NaCl with a purity of 96.7%. The results obtained here are very encouraging and showed the usability of MIP/anti‐hIgG cryogel prepared via imprinting of Fc fragments as an alternative to conventional immunoaffinity techniques for IgG purification. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Molecular imprinting is an attractive biomimetic approach that creates specific recognition sites for the shape and functional group arrangement to template molecules. The purpose of this study is to prepare cytochrome c-imprinted poly(hydroxyethyl methacrylate) (PHEMA)-based supermacroporous cryogel which can be used for the separation of cytochrome c from protein mixtures. N-Methacryloyl-(L)-histidinemethylester (MAH) was used as the metal-coordinating monomer. In the first step, Cu(2+) was complexed with MAH, and the cytochrome c imprinted PHEMA (MIP) cryogel was prepared by free radical cryopolymerization initiated by N,N,N',N'-tetramethylene diamine at -12°C. After polymerization is completed, the template cytochrome c molecules were removed from the MIP cryogel using 0.5 M NaCl solution. The maximum cytochrome c binding amount was 126 mg/g polymer. Selective binding studies were performed in the presence of lysozyme and bovine serum albumin. The relative selectivity coefficients of MIP cryogel for cytochrome c/lysozyme and cytochrome c/bovine serum albumin were 1.7 and 5.2 times greater than those of the non-imprinted PHEMA cryogel, respectively. The selectivity of MIP cryogel for cytochrome c was also confirmed with fast protein liquid chromatography. The MIP cryogel could be used many times with no remarkable decrease in cytochrome c binding capacity.  相似文献   

9.
The use of highly purified immunoglobulin became among the most powerful adopted strategies in therapeutic trials nowadays. Their role as immunomodulatory and anti-inflammatory agents has widened their scope of use. A novel continuous supermacroporous monolithic cryogels embedded with histidine-epoxy-activated-sepharose beads were synthetized as a new monolithic adsorbents for the separation of immunoglobulin G from human serum. The histidine-epoxy-activated-sepharose beads were embedded into the 2-hydroxyethyl methacrylate (HEMA) cryogels present in frozen aqueous solution inside a plastic syringe. The microstructure morphology of the cryogels was characterized by swelling measurement and scanning electron microscopy. The adsorption of human IgG on the histidine-epoxy-activated-sepharose beads pHEMA cryogels appeared to follow the Langmuir–Freundlich adsorption isotherm model. The maximum IgG adsorption was observed at 4°C and pH 7.4 and was found to be 26.95 mg/g of cryogel which is close to that obtained experimentally (24.49 mg/g). The cryogels were used for several adsorption-desorption cycles without any negligible decrease in their adsorption capacity.  相似文献   

10.
Creatinine imprinted cryogel (MIP) cartridge was prepared with functional monomer N-methacryloyl-(L)-histidinemethylester (MAH) under frozen conditions. Creatinine adsorption studies and selectivity of MIP cryogel were evaluated in aqueous solution and artificial urine sample. Maximum adsorbed amount of creatinine was calculated as 6.83 mg/g polymer for MIP cryogel. Langmuir and Freundlich adsorption isotherm models were used to investigate the adsorption behaviour of creatinine. In the artificial urine sample; recovery amounts of creatinine were found 34.7–46.2%. Creatinine imprinted cryogel (MIP) cartridge recognized creatinine, 4.58 and 4.37 times greater competitive molecules. MIP cryogel catridge was repeatedly used many times for adsorption desorption cycles.  相似文献   

11.
Cibacron Blue F3GA was immobilized on poly(hydroxyethyl methacrylate) cryogel and it was used for selective and efficient depletion of albumin from human serum. The poly(hydroxyethyl methacrylate) was selected as the basic component because of its inertness, mechanical strength, chemical and biological stability, and biocompatibility. Cibacron Blue F3GA was covalently attached to the poly(hydroxyethyl methacrylate) cryogel to produce poly(hydroxyethyl methacrylate)-Cibacron Blue F3GA cryogel affinity column. The poly(hydroxyethyl methacrylate)-Cibacron Blue F3GA cryogel was characterized with respect to gelation yield, swelling degree, total volume of macropores, Fourier Transform Infrared spectroscopy, and scanning electron microscopy. It was found that the maximum amount of adsorption (343 mg/g of dry cryogel) obtained from experimental results is very close to the calculated Langmuir adsorption capacity (345 mg/g of dry cryogel). The maximum adsorption capacity for poly(hydroxyethyl methacrylate)-Cibacron Blue F3GA cryogel column was obtained as 950 mg/g of dry cryogel for nondiluted serum. The adsorption capacity decreased with increasing dilution ratios while the depletion ratio of albumin remained as 77% in serum sample. Finally, the poly(hydroxyethyl methacrylate)-Cibacron Blue F3GA cryogel was optimized for using in the fast protein liquid chromatography system for rapid removal of the high abundant proteins from the human serum.  相似文献   

12.
In this study, concanavalin A (Con A)-attached poly(ethylene glycol dimethacrylate) [poly(EGDMA)] cryogels were used for immobilization of Aspergillus niger inulinase. For this purposes, the monolithic cryogel column was prepared by radical cryocopolymerization of EGDMA as a monomer and N,N′-methylene bisacrylamide as a crosslinker. Then, Con A was attached by covalent binding onto amino-activated poly(EGDMA) cryogel via glutaraldehyde activation. Characterization of cryogels was performed by FTIR, EDX, and SEM studies. Poly(EGDMA) cryogels were highly porous and pore size was found to be approximately 50–100 μm. Con A-attached poly(EGDMA) cryogels was used in the adsorption of inulinase from aqueous solutions. Adsorption of inulinase on the Con A-attached poly(EGDMA) cryogel was performed in continuous system and the effects of pH, inulinase concentration, and flow rate on adsorption were investigated. The maximum amount of inulinase adsorption was calculated to be 27.85 mg/g cryogel at 1.0 mg/mL inulinase concentration and in acetate buffer at pH 4.0. Immobilized inulinase was effectively used in continuous preparation of high-fructose syrup. Inulin was converted to fructose in a continuous system and released fructose concentration was found to be 0.23 mg/mL at the end of 5 min of hydrolysis. High-fructose content of the syrup was demonstrated by thin layer chromatography.  相似文献   

13.
The protein C imprinted monolithic cryogel was synthesized using 2‐hydroxyethyl methacrylate by redox cryo‐polymerization method. The prepared monolithic cryogel was characterized by Fourier transform infrared spectroscopy, swelling test, surface area measurements, and scanning electron microscopy. The nonimprinted cryogel was prepared as well for control. Adsorption of protein C from aqueous solutions was investigated in a continuous mode and several parameters affecting adsorption performance were optimized. The maximum protein C adsorption amount was 30.4 mg/g. The selectivity studies were performed by monolithic column studies and fast protein liquid chromatography, using hemoglobin and human serum albumin as competing proteins. The relative selectivity coefficients were 2.37 and 8.89 for hemoglobin and human serum albumin, respectively. Reusability was tested for ten consecutive adsorption–desorption cycles, and no significant change in adsorption capacity was recorded. A pseudo‐second‐order model was suitable to interpret kinetic data, and the Langmuir model suited the adsorption isotherms well.  相似文献   

14.
Cryogels with interconnected channels allow high flow-through properties and mass transfer when dealing with complex mixtures such as non-clarified crude extracts. However, their mechanical strength can be challenged due to a large void volume inside the polymeric network. We have addressed this problem by forming a double-layer cryogel applied as a dye-affinity chromatography gel. In this study, poly(acrylamide-co-allyl glycidyl ether) cryogel was prepared at sub-zero temperature. The second layer was then prepared inside the primary cryogel under the same conditions to form a double-layer network. Cibacron Blue F3GA, a dye molecule, was immobilized on the surface of the cryogels. Bovine serum albumin was used as a model molecule to study the adsorption/elution procedure in batch and continuous modes. The maximum batch binding capacity and the dynamic binding capacity for the single-layer cryogel were 18 and 0.11, and for the double-layer cryogel were 7.5 and 0.9 mg/g of gel, respectively. However, the mechanical stability of the double-layer cryogel increased 7-fold (144 kPa). It was found that the kinetic and adsorption isotherms follow pseudo-second-order and Freundlich models, respectively. The regeneration of the columns after adsorption/elution cycles was evaluated, and no significant loss of capacity was observed after 10 cycles.  相似文献   

15.
The separation and purification of important biomolecule deoxyribonucleic acid (DNA) molecules are extremely important. The adsorption technique among these methods is highly preferred as the adsorbent cryogels are pretty much used due to large pores and the associated flow channels. In this study, the adsorption of DNA via Co(II) immobilized poly(2-hydroxyethyl methacrylate-glycidyl methacrylate) [poly(HEMA-GMA)] cryogels was performed under varying conditions of pH, interaction time, initial DNA concentration, temperature, and ionic strength. For the characterization of cryogels; swelling test, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), surface area (BET), elemental and ICP-OES analysis were performed. L-lysine amino acid was chosen as Co(II)-chelating agent and the adsorption capacity of cryogels was determined as 33.81 mg DNA/g cryogel. Adsorption of pea DNA was studied under the optimum adsorption conditions and DNA adsorption capacity of cryogels was found as 10.14 mg DNA/g cryogel. The adsorption process was examined via Langmuir and Freundlich isotherm models and the Langmuir adsorption model was determined to be more appropriate for the DNA adsorption onto cryogels.  相似文献   

16.
A novel separation method was developed to isolate directly cytidine triphosphate (CTP) from fermentation broth of yeast using anion-exchange supermacroporous cryogel. The anion-exchange cryogel with tertiary amine groups was prepared by graft polymerization. The breakthrough characteristics and elution performance of pure CTP in the cryogel bed were investigated experimentally and the CTP binding capacity was determined. Then the separation experiments of CTP from crude fermentation broth of yeast using the cryogel column were carried out using deionized water and 0.01 M HCl as washing buffer, respectively. The chromatographic behavior was monitored and analyzed. The purity and concentration of the obtained CTP in these processes were determined quantitatively by HPLC. The maximal purity of CTP obtained at the condition of 0.01 M HCl as washing buffer and 0.5 M NaCl in 0.01 M HCl as elution buffer reached 93%.  相似文献   

17.
As alternative hydrophobic adsorbent for DNA adsorption, supermacroporous cryogel disks were synthesized via free radical polymerization. In this study, we have prepared two kinds of cryogel disks: (i) poly(2‐hydroxyethyl methacrylate‐N‐methacryloyl‐l ‐tryptophan) [p(HEMA‐MATrp)] cryogel containing specific hydrophobic ligand MATrp; and (ii) monosize p(HEMA‐MATrp) particles synthesized via suspension polymerization embedded into p(HEMA) cryogel structure to obtain p(HEMA‐MATrp)/p(HEMA) composite cryogel disks. These cryogel disks containing hydrophobic functional group were characterized via swelling studies, Fourier transform infrared spectroscopy, elemental analysis, surface area measurements and scanning electron microscopy. DNA adsorption onto both p(HEMA‐MATrp) cryogel and p(HEMA‐MATrp)/p(HEMA) composite cryogels was investigated. Maximum adsorption of DNA on p(HEMA‐MATrp) cryogel was found to be 15 mg/g polymer. Otherwise, p(HEMA‐MATrp)/p(HEMA) composite cryogels significantly increased the DNA adsorption capacity to 38 mg/g polymer. Composite cryogels could be used repeatedly without significant loss on adsorption capacity after 10 repetitive adsorption–desorption cycles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The present work deals with uranium removal from a nitric acid raffinate (waste) solution using prepared solvent (tri-butyl phosphate, TBP) immobilizing PVC cement (SIC) as a suitable adsorbent. The studied relevant factors affecting uranium adsorption onto SIC adsorbent involved; contact time, solution molarity, initial uranium concentration and temperature. The obtained adsorption isotherm of uranium onto the SIC adsorbent was fitted to Langmuir, Freundlich and Dubinin–Radushkviech (D–R) adsorption models. The results showed that the obtained equilibrium data fitted well the Langmuir isotherm. Additionally, it was found that the adsorption process obeys the pseudo second-order kinetic model. On the other hand, the calculated theoretical capacity of our prepared SIC adsorbent reached about 17 g U/kg SIC. Uranium adsorption from the studied raffinate solution was carried out applying the attained optimum conditions. The obtained data showed that 58.4 mg U/5 g SIC were adsorbed. However, using of 2 M HNO3 solution as an eluent, 93 (54.3 mg U) from the adsorbed amount were eluted.  相似文献   

19.
A novel, facile, and robust strategy was proposed to increase the pore size and mechanical strength of cryogels. By mixing the monomers of acrylamide and 2‐hydroxyethyl methacrylate as the precursor, a monolithic copolymer cryogel with large interconnected pores and thick pore walls was prepared. Hydrogen bonding between the two monomers contributed to the entanglement and aggregation of the copolymers, thickening the pore walls and resulting in larger pore sizes. Analysis via mercury porosimetry demonstrated that the interconnected pore diameter of the copolymer cryogel ranged from 10‐350 µm, which was far larger than that of the cryogels from one monomer (10‐50 µm). Additionally, the thicker pore walls of the copolymer cryogel improved its mechanical strength. Affinity cryogels were prepared through covalent immobilization using Tris(hydroxymethyl)aminomethane as a coupling agent, and the affinity binding of lysozymes on Tris‐cryogel was evaluated by the Langmuir isothermal adsorption with the maximum adsorption capacity of 360 mg/g. Compared with that of the Tris‐cryogels produced from one monomer, the copolymer Tris‐cryogel exhibited higher adsorption capacity and lysozyme purity, when the chicken egg white solution flowed solely driven by gravity. This work provides a new avenue for designing and developing supermacroporous cryogels for bioseparation.  相似文献   

20.
Histidine-tagged lentiviral vectors were separated from crude cell culture supernatant using labscale monolithic adsorbents by immobilized metal affinity chromatography. The capture capacity, concentration factor, purification factor, and elution efficiency of a supermacroporous cryogel monolith were evaluated against the BIA Separations convective interaction media (CIM) disc, which is a commercial macroporous monolith. The morphology of the polymeric cryogel material was characterised by scanning electron microscopy. Iminodiacetic acid was used as the metal chelating ligand in both monoliths and the chelating capacity for metal ions was found to be comparable. The CIM-IDA-Ni(2+) adsorbent had the greatest capture capacity (6.7 x 10(8) IU/ml of adsorbent), concentration factor (1.3-fold), and elution efficiency (69%). Advantages of the cryogel monoliths included rapid, low pressure processing as well low levels of protein and DNA in the final purified vector preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号