共查询到20条相似文献,搜索用时 0 毫秒
1.
Muthusamy A Kudwa PP Prabhu V Mahato KK Babu VS Rao MR Gopinath PM Satyamoorthy K 《Photochemistry and photobiology》2012,88(5):1227-1235
In the present study, the seeds of brinjal (Solanum melongena L.) var. Mattu Gulla were irradiated with single exposure of He–Ne laser at different doses of 5–40 J cm?2 and germinated aseptically. Thirty day old seedlings were harvested and the germination, growth, physiological and biochemical parameters were estimated and compared with un‐irradiated control seedlings. A significant enhancement in growth characters were noted with respect to length, fresh and dry weight of shoots and roots. In addition, chlorophyll (a and b), carotenoid content, anthocyanin and amylases (α and β) activities were found to be altered. Significant alterations in percentage of seed germination (P < 0.001) and time to 50% germination (P < 0.001) were observed in the irradiated seeds compared with the un‐irradiated controls. In conclusion, the results of the present study demonstrated that low dose (5–30 J cm?2) of He–Ne laser irradiation enhanced the germination process and altered growth, by positively influencing physiological and biochemical parameters of the brinjal seedlings compared with un‐irradiated control under in vitro conditions. 相似文献
2.
3.
Laura Aracely Contreras-Angulo Aldo Moreno-Ulloa Rommel A. Carballo-Castaeda Josefina Len-Felix Jos Geovanni Romero-Quintana Maribel Aguilar-Medina Rosalío Ramos-Payn J. Basilio Heredia 《Molecules (Basel, Switzerland)》2022,27(20)
The eggplant is a fruit rich in natural products and produced worldwide. However, its cultivation generates a large amount of scarcely used agricultural residues with poor chemical characterization. This study aimed to identify and quantify the metabolome and determine the composition of select phytochemicals and the overall antioxidant capacity of various anatomical parts of the plant. The plant’s root, leaf, stem, and fruit were analyzed by quantitative mass spectrometry-based untargeted metabolomics and chemoinformatics, and phytochemicals were quantified by spectrophotometric analysis. Moreover, we determined the total antioxidant capacity of the distinct plant parts to infer a possible biological effect of the plant’s metabolites. Various secondary metabolites were identified as terpenes, phenolic compounds, alkaloids, and saponins, distributed throughout the plant. The leaf and fruit presented the highest concentration of phenolic compounds, flavonoids, anthocyanins, and alkaloids, accompanied by the highest antioxidant capacity. Although the stem and root showed the lowest abundance of secondary metabolites, they provided around 20% of such compounds compared with the leaf and fruit. Overall, our study improved the understanding of the eggplant metabolome and concluded that the plant is rich in secondary metabolites, some with antioxidant properties, and shows potential nutraceutical and biopharmaceutical applications. 相似文献
4.
5.
Phenylethyl cinnamides as potential alpha-glucosidase inhibitors from the roots of Solanum melongena
Bioassay-guided fractionation against alpha-glucosidase resulted in isolation and identification of six phenolic compounds (1-6) from the 70% EtOH extract of the roots of Solanum melongena L. (Solanaceae). Of these, three phenylethyl cinnamides, N-trans-feruloyl tyramine (1), N-trans-p-coumaroyl tyramine (2) and N-cis-p-coumaroyl tyramine (3) possessed inhibitory activity against alpha-glucosidase with IC50 values of 500.6, 5.3 and 46.3 microM, respectively. Mechanism analysis revealed these phenylethyl cinnamides were non-competitive inhibitors. This is the first study of the alpha-glucosidase inhibitory activities of the roots of S. melongena, and this preliminary observation suggested potential medicinal use of this herb. 相似文献
6.
7.
Carolina Lopes Leivas Fernanda Janaína Oliveira Gomes da Costa Rafael Ramirez de Almeida Renato João Sossela de Freitas Sônia Cachoeira Stertz Egon Schnitzler 《Journal of Thermal Analysis and Calorimetry》2013,111(3):2211-2216
In this work, two varieties of potato flour (Ágata and IAPAR Cristina) were studied by simultaneous thermogravimetry–differential thermal analysis (TG–DTA), differential scanning calorimetry (DSC), rapid viscoamylographic analysis (RVA), and microscopy (NC-AFM) that were compared with conventional physico-chemical analysis, according different granulometry of each flour. Flours of IAPAR Cristina showed higher levels of starch, fiber, and phosphate and it showed higher thermal stability (TG–DTA), as well as higher pasting temperature and viscosity (RVA), and lower enthalpy of gelatinization (DSC) in the two granulometries. Flours of Agata showed higher gelatinization enthalpy (DSC) and lower pasting temperature (RVA). Atomic force microscopy—non contact method (NC-AFM), was important to check for protrusions and pores of the flour surfaces. The differences between cultivars can be attributed mainly to the genotypes and growth conditions of the tubers, which can modify the flour properties. 相似文献
8.
9.
N'dri D Calani L Mazzeo T Scazzina F Rinaldi M Rio DD Pellegrini N Brighenti F 《Molecules (Basel, Switzerland)》2010,15(10):7125-7138
Gnagnan (Solanum indicum L.) is a spontaneous plant widely distributed in Ivory Coast. During ripening stages, Solanum indicum L. presents different colours (green, yellow and red) and is reported to contain several albeit poorly characterized antioxidant compounds. This paper describes in detail the antioxidant profile (ascorbic acid, carotenoids and polyphenols), antioxidant capacity (FRAP test and Folin-Ciocalteau assay) and the colour changes of Gnagnan berries at different ripening levels. Ascorbic acid content was similar in green and yellow berries, but significantly lower in red ones. Red berries showed a higher content of carotenoids compared to green and yellow ones. Regarding polyphenols, several phenolic acids and flavonoids were found in all berries. The content of caffeoylquinic acids, caffeic acid, flavonol glycosides and naringenin was higher in red berries, while the content of p-coumaric acid and feruloylquinic acids was similar among the three colours. The FRAP assay increased with the ripening process, whereas total polyphenols were similar among berries. Significant differences were found for the colorimetric indexes among products of different degrees of ripening. The present results show the important role of the ripening stage in increasing the antioxidant content of Gnagnan berries. 相似文献
10.
The agriculture sector faces numerous problems. One of the beforementioned problems relates to the proper crop plants’ fertilization. The conventional bulk fertilizers are becoming less effective and have a negative impact on the environment. Nanomaterials such as zinc oxide nanoparticles (ZnO NPs) are widely used in various sectors such as medicine or electronics. Several studies indicate that nano-ZnO may likewise be considered as a potential nanofertilizer. In present research, an attempt was made to study the influence of two different sized ZnO NPs (<50 nm and <100 nm) on the seed germination of chosen tomato (Solanum lycopersicum) cultivars. The seeds of three cherry tomato cultivars were placed on a Petri dish with the NPs suspensions (0, 50, 150, and 250 mg/L) in order to examine the influence on germination parameters at a certain size of NPs and at a chosen concentration. In addition, within this study, we verified that the implicated conditions have the exact impact on all three cultivars. The obtained results indicate that all the factors affect the seed sprouting, however, this process mainly depends on the type of tomato cultivar and the size of the used nanoparticles. The parameter of the germination percentage (GP) was the only of the assumed factors that did not influence it significantly. Nevertheless, the values of other examined parameters such as the MGT, GRI, CVG, or VI depend strongly on all assumed features including the type of chosen cultivar. The obtained results vary significantly between all cultivars which indicates that the plants from the same family may require different conditions for optimal growth. In this research the <50 nm ZnO nanoparticles had more beneficial influence on sprouting parameters then parallelly used <100 nm ZnO nanoparticles. 相似文献
11.
Gabriel-Dnu Mocanu Oana-Viorela Nistor Oana Emilia Constantin Doina Georgeta Andronoiu Viorica Vasilica Barbu Elisabeta Botez 《Molecules (Basel, Switzerland)》2022,27(5)
Green pickled tomatoes are a traditional fermented product in Romania. This study was focused on the effect of total substitution of NaCl with KCl and MgCl2 on physicochemical and microbiological quality; bioactive compounds; and microstructural, textural, and sensorial properties of fresh and pickled green tomatoes during 28 days of fermentation. By the means of physicochemical composition, the NaCl addition induced the most stable characteristics for the pickles compared to the other two types of salts. The content of total flavonoids in green pickled tomatoes with NaCl (34.72 ± 0.43 mg CE/g DW) was significantly lower compared with the control sample (63.80 ± 0.55 mg CE/g DW). The total number of lactic acid bacteria (LAB) at the final stage of fermentation varied between 4.11 and 4.63 log CFU for all variants. The textural analysis revealed that the NaCl has the lowest influence on the textural parameters. Finally, the overall acceptance of green pickled tomatoes containing KCl and MgCl2 was found to be proper to be consumed as a substitute for pickles with NaCl. 相似文献
12.
A bottleneck in crosstalk and QC research has been the quantification of diverse chemotypes in small amounts of tissue. An LC-UV method for estimating 28 selected metabolites of the regulatory network underlying growth, development, maintenance, vital functions, defense reactions, and food quality is reported. The method was based on binary gradient resolutions of the analytes in an RP C18 column. The mobile phase comprised solvent A [water+0.1% trifluoroacetic acid (TFA)] and B (acetonitrile + 0.085% TFA at a flow rate of 1 ml/min. Twenty-three metabolites (selected amino acids, coenzymes, growth regulators, phenolic antioxidant, and water-soluble vitamins) were detected at 254 nm, and four fat-soluble vitamins at 280 nm. Jasmonic acid was quantified at 210 nm. The RSDs of peak area and retention time for each metabolite were <5.8%. The calibration graphs were linear with R2 values ranging from 0.98 to 0.99. The LODs (microg/mL) were about 0.01-1.0 for 23 metabolites quantified at 254 nm, 0.1-0.2 for fat-soluble vitamins, and 0.1 for jasmonic acid. The recoveries ranged from 80 to 105%, with RSDs of 2.8 to 11.2%. The method has been satisfactorily applied for determination of 28 metabolites from Cicer arietinum (L.) and Solanum lycopersicum (L.). It could be an alternative and competitive method of choice that can cheaply and easily perform routine analysis for food quality and targeted metabolomics of chickpea and tomato in response to stressors. 相似文献
13.
Shubhra Singh Jatiender Kumar Dubey Sapna Katna Ajay Sharma Nisha Devi Gaganpreet Singh Brar Gagandeep Singh Himani Gautam Nimisha Thakur 《Biomedical chromatography : BMC》2022,36(7):e5372
Pesticide residue in food commodities is a serious concern in relation to consumer safety and also the most significant barrier in the trade of food commodities. The dissipation pattern of four insecticides, namely novaluron, λ-cyhalothrin, imidacloprid, and fenazaquin, was evaluated on tomato fruits and cropped soil. The residues were extracted using the QuEChERS analytical method and quantized using a gas chromatograph with electron capture detector, gas chromatograph mass spectrometer, and high-performance liquid chromatography with photo diode array detector. The analytical method was validated using parameters like recovery, linearity, accuracy, matrix effect, and specificity, with limit of detection and limit of quantitation established to be 0.01 and 0.05 mg/kg, respectively, for all the pesticides. The average initial deposits (samples collected after 2 h of application) at the recommended dose of novaluron, λ-cyhalothrin, imidacloprid, and fenazaquin were 0.593, 0.293, 0.227, and 0.431 mg/kg on tomato fruits, respectively, and were below the limit of quantification in soil. The pre-harvest interval of 17, 8, 1, and 13 days was suggested for novaluron, λ-cyhalothrin, imidacloprid, and fenazaquin on tomato, respectively. Risk assessment studies revealed that all pesticides under study are safe and do not pose any threat to humans as theoretical maximum dietary intake is less than the maximum permissible intake and acceptable daily intake. 相似文献
14.
Aleksandra Stegliska Katarzyna Pielech-Przybylska Regina Janas Mieczysaw Grzesik Sebastian Borowski Dorota Krgiel Beata Gutarowska 《Molecules (Basel, Switzerland)》2022,27(12)
The feasibility of early disease detection in potato seeds storage monitoring of volatile organic compounds (VOCs) and plant physiological markers was evaluated using 10 fungal and bacterial pathogens of potato in laboratory-scale experiments. Data analysis of HS-SPME-GC-MS revealed 130 compounds released from infected potatoes, including sesquiterpenes, dimethyl disulfide, 1,2,4-trimethylbenzene, 2,6,11-trimethyldodecane, benzothiazole, 3-octanol, and 2-butanol, which may have been associated with the activity of Fusarium sambucinum, Alternaria tenuissima and Pectobacterium carotovorum. In turn, acetic acid was detected in all infected samples. The criteria of selection for volatiles for possible use as incipient disease indicators were discussed in terms of potato physiology. The established physiological markers proved to demonstrate a negative effect of phytopathogens infecting seed potatoes not only on the kinetics of stem and root growth and the development of the entire root system, but also on gas exchange, chlorophyll content in leaves, and yield. The negative effect of phytopathogens on plant growth was dependent on the time of planting after infection. The research also showed different usefulness of VOCs and physiological markers as the indicators of the toxic effect of inoculated phytopathogens at different stages of plant development and their individual organs. 相似文献
15.
Shi Jianbin Wang Jian Wang Ning Zhou Hong Xu Qinghua Yan Gentu 《Applied biochemistry and biotechnology》2019,187(4):1204-1219
Applied Biochemistry and Biotechnology - It has been known that GA2ox is one kind of key enzyme gene in the gibberellin synthesis pathway, which plays important regulatory roles throughout plant... 相似文献
16.
S. Vinoth P. Gurusaravanan N. Jayabalan 《Applied biochemistry and biotechnology》2013,169(4):1173-1187
A simple and efficient protocol for Agrobacterium-mediated genetic transformation of tomato was developed using combination of non-tissue culture and micropropagation systems. Initially, ESAM region of 1-day-old germinated tomato seeds were microinjected for one to five times with Agrobacterium inoculums (OD600?=?0.2–1.0). The germinated seeds were cocultivated in the MS medium fortified with (0–200 mM) acetosyringone and minimal concentrations of (0–20 mg?L?1) kanamycin, and the antibiotic concentration was doubled during the second round of selection. Bacterial concentration of OD600?=?0.6 served as an optimal concentration for infection and the transformation efficiency was significantly higher of about 46.28 %. In another set of experiment, an improved and stable regeneration system was adapted for the explants from the selection medium. Four-day-old double cotyledonary nodal explants were excised from the microinjected seedlings and cultured onto the MS medium supplemented with 1.5 mg?L?1 thidiazuron, 1.5 mg?L?1 indole-3-butyric acid, 30 mg?L?1 kanamycin, and 0–1.5 mg?L?1 adenine sulphate. Maximum of 9 out of 13 micropropagated shoots were shown positive to GUS assay. By this technique, the transformation efficiency was increased from 46.28 to 65.90 %. Thus, this paper reports the successful protocol for the mass production of transformants using microinjection and micropropagation techniques. 相似文献
17.
In order to study the adaptation ability of sweet sorghum (Sorghum bicolor L. Moench) in the Yellow River Delta, the sweet sorghum variety Mart was used in this study to determine the roles of different saline-alkaline ratio stress treatment during seed germination to seedling stage. The results showed that Na+ concentration had a significant impact on the seed germination, seedling growth, and plant survival of sweet sorghum. Increasing Na+ concentration led to a decline in germination rate, final germination percentage, survival percentage, plant height, and dry weight per plant, a prolonged mean time of germination, as well as loss of improvement effect of low-Na+ concentration. The interaction effect of Na+ concentration and pH on the mean time of germination and germination rate was not significant (p?0.05). However, under the condition of low-Na+ concentration (100 mM), high pH reduced the mean time of germination and increased the germination rate, without decline in final germination percentage and survival percentage. Therefore, at least in the duration of seed germination to the harvest period in the research, the sweet sorghum was resistant to the pH stress (≥9.04) when the Na+ concentration was below 100 mM. When suffered from the saline-alkaline stress, the seedling of sweet sorghum was characterized by ecological adaptive features, such as decreased stem ratio and chlorophyll b content in leaves and increased root ratio and chlorophyll a content, in order to maintain the uptakes of water and nutrient, and carbon assimilation. When the stress intensified, the lipid oxidation products, e.g., malondialdehyde (MDA), increased in sweet sorghum seedlings. However, the increasing of soluble protein content and antioxidant enzyme activity (superoxide dismutase (SOD), guaiacol peroxidase (POD), and gatalase (CAT)) was only founded in neutral low-Na+ concentration treatment (A1), which indicated that high-salt concentration and pH all elicited harmful effects and limited the self-healing ability of sweet sorghum seedlings. In all, in order to grow sweet sorghum in the saline-alkaline soils of the Yellow River Delta, the salt concentration and pH value of the soil must be taken into consideration, and seeding density should be increased and supported by appropriate irrigation measures to reduce saline-alkaline stress so as to ensure the survival and growth of sweet sorghum seedlings. 相似文献
18.
Sonika Pandey Avinash Mishra Manish Kumar Patel Bhavanath Jha 《Applied biochemistry and biotechnology》2013,171(1):1-9
Cumin is an annual herbaceous medicinally important plant having diverse applications. An efficient and reproducible method of Agrobacterium-mediated genetic transformation was herein established for the first time. A direct regeneration method without callus induction was optimised using embryos as explant material in Gamborg’s B5 medium supplemented with 0.5-μM 6-benzyladenine and 2.0-μM α-naphthalene acetic acid. About 1,020 embryos (a mean of 255 embryos per batch) were used for the optimisation of transformation conditions. These conditions were an Agrobacterium cell suspension of 0.6 OD600, a co-cultivation time of 72 h, 300-μM acetosyringone and wounding of explants using a razor blade. Pre-cultured elongated embryos were treated using optimised conditions. About 720 embryos (a mean of 180 embryos per batch) were used for transformation and 95 % embryos showed transient β-glucuronidase expression after co-cultivation. Putative transformed embryos were cultured on B5 medium for shoot proliferation and 21 regenerated plants were obtained after selection and allowed to root. T0 plantlets showed β-glucuronidase expression and gene integration was confirmed via PCR amplification of 0.96 and 1.28 kb fragments of the hygromycin-phosphotransferase II and β-glucuronidase genes, respectively. In this study, a transformation efficiency of 1.5 % was demonstrated and a total of 11 transgenic plants were obtained at the hardening stage, however, only four plants acclimatised during hardening. Gene copy number was analysed by Southern blot analysis of hardened plants and single-copy gene integration was observed. This is the first successful attempt of Agrobacterium-mediated genetic transformation of cumin. 相似文献
19.
Weihong Sun Chaowei Yang Xinhe Shan Mingzhu An Xianguo Wang 《Molecules (Basel, Switzerland)》2022,27(21)
The inclination toward natural products has led to the onset of the discovery of new bioactive metabolites that could be targeted for specific therapeutic or agronomic applications. Despite increasing knowledge coming to light of allelochemicals as leads for new herbicides, relatively little is known about the mode of action of allelochemical-based herbicides on herbicide-resistant weeds. Cyanamide is an allelochemical produced by hairy vetch (Vicia villosa Roth.). This study aimed to detect the toxicity of cyanamide to alfalfa and amaranth. Seed germination experiments were carried out by the filter paper culture, and the seedling growth inhibition experiment was carried out by spraying alfalfa (Medicago sativa L.) and amaranth (Amaranthus retroflexus L.) seedlings with cyanamide. The results showed that when the concentration of cyanamide was 0.1 g·L−1, the germination of amaranth seeds could be completely inhibited without affecting the germination of alfalfa seeds. At the concentration of 0.5 g·L−1, cyanamide could significantly inhibit the growth of the root and stem of amaranth seedlings but did not affect the growth of alfalfa. This effect was associated with the induction of oxidative stress. The ascorbate peroxidase (APX) and catalase (CAT) activity of amaranth decreased by 6.828 U/g FW and 290.784 U/g FW, respectively. The malondialdehyde (MDA) content, peroxidase (POD), and superoxide dismutase (SOD) activity of amaranth firstly increased and then decreased with the increasing concentration of CA. These enzyme activities of amaranth changed more than that of alfalfa. Activities of the antioxidant enzymes APX, CAT, POD, and SOD and the content of MDA varied dramatically, thereby demonstrating the great influence of reactive oxygen species upon identified allelochemical exposure. In addition, cyanamide can also inhibit the production of chlorophyll, thereby affecting the growth of plants. From the above experiments, we know that cyanamide can inhibit the growth of amaranth in alfalfa fields. Thus, the changes caused by cyanamide described herein can contribute to a better understanding of the actions of allelochemical and the potential use of cyanamide in the production of bioherbicides. 相似文献
20.
Zahoor Ahmad Shazia Anjum Milan Skalicky Ejaz Ahmad Waraich Rana Muhammad Sabir Tariq Muhammad Ashar Ayub Akbar Hossain Mohamed M. Hassan Marian Brestic Mohammad Sohidul Islam Muhammad Habib-Ur-Rahman Allah Wasaya Muhammad Aamir Iqbal Ayman EL Sabagh 《Molecules (Basel, Switzerland)》2021,26(6)
Drought poses a serious threat to oilseed crops by lowering yield and crop failures under prolonged spells. A multi-year field investigation was conducted to enhance the drought tolerance in four genotypes of Camelina and canola by selenium (Se) application. The principal aim of the research was to optimize the crop yield by eliciting the physio-biochemical attributes by alleviating the adverse effects of drought stress. Both crops were cultivated under control (normal irrigation) and drought stress (skipping irrigation at stages i.e., vegetative and reproductive) conditions. Four different treatments of Se viz., seed priming with Se (75 μM), foliar application of Se (7.06 μM), foliar application of Se + Seed priming with Se (7.06 μM and 75 μM, respectively) and control (without Se), were implemented at the vegetative and reproductive stages of both crops. Sodium selenite (Na2SeO3), an inorganic compound was used as Se sources for both seed priming and foliar application. Data regarding physiochemical, antioxidants, and yield components were recorded as response variables at crop maturity. Results indicated that WP, OP, TP, proline, TSS, TFAA, TPr, TS, total chlorophyll contents, osmoprotectant (GB, anthocyanin, TPC, and flavonoids), antioxidants (APX, SOD, POD, and CAT), and yield components (number of branches per plant, thousand seed weight, seed, and biological yields were significantly improved by foliar Se + priming Se in both crops under drought stress. Moreover, this treatment was also helpful in boosting yield attributes under irrigated (non-stress) conditions. Camelina genotypes responded better to Se application as seed priming and foliar spray than canola for both years. It has concluded that Se application (either foliar or priming) can potentially alleviate adverse effects of drought stress in camelina and canola by eliciting various physio-biochemicals attributes under drought stress. Furthermore, Se application was also helpful for crop health under irrigated condition. 相似文献