首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
研究两个自由度的机翼在不可压缩流作用下颤振的分支问题.运用罗司-霍维茨判据确定系统的分叉点,应用中心流形理论将四维系统降为二维系统,用直接求周期解方法对分叉点的真假中心及稳定性问题进行了分析,并研究了系统的极限环颤振.结果表明,本文研究的分叉点不是中心,而是稳定或不稳定焦点.在两个分叉点处,系统发生了超临界和亚临界Hopf分叉,产生稳定或不稳定极限环.  相似文献   

2.
不可压气流中二元机翼的分叉分析   总被引:4,自引:0,他引:4  
本文分析了不可压气流中带有非线性俯仰刚度二元机翼的分叉问题.分析采用了工程实用的等效线化法和作为比较标准的数值积分法,并借助计算机代数系统按Hassard渐近展开算法及平均化算法求得解析解进行比较.从而论证等效线化法的可用性.  相似文献   

3.
为考查基于假设模态法在时域中开展壁板非线性颤振分析的可行性,在相同的参数下,分别采用时域方法和频域方法研究了超声速飞行器壁板的非线性颤振响应,并从壁板的颤振幅值、颤振频率和颤振型态三个方面对时域和频域分析结果的一致性作了较详细的比较。首先,基于von Karman应变-位移关系和Mindlin板理论建立考虑几何非线性的壁板力学模型,应用一阶活塞理论分析壁板上单面承受的超声速准定常气动力,基于虚功原理和有限单元法推导壁板的运动微分方程。然后,用壁板的线性固有模态作为假设模态,减缩系统的自由度而得到降阶模型。采用四阶龙格-库塔法对降阶模型作时域数值积分,得到壁板的非线性颤振响应。另一方面,假设壁板的极限环颤振为简谐振荡,可对壁板的非线性刚度作等效线性化处理,进而在频域中直接在有限元(未降阶)模型的基础上分析壁板的颤振幅值、颤振频率和颤振型态。数值分析表明,当极限环颤振为简谐振荡时,时域方法和频域方法的计算结果符合一致。本文最后讨论了时域法和频域法应用在壁板非线性颤振分析中各自的优点和局限性。  相似文献   

4.
本文研究了具有非退化有心二次代数曲线解的kolmogorov型三次系统的极限环。证明了当二次曲线解只与一个坐标轴相切时,该系统不存在极限环。发二次曲线解与两个坐标轴均相切时,可以存在极限环。并给出了例子。  相似文献   

5.
本文从实验方面来研究室外挂俯仰有预加载间隙对颤振的影响。风洞吹风中测出了单稳定极限环、双稳定极限环颤振的情况。实验结果与谐波平衡法计算值进行了比较。  相似文献   

6.
激波主导流动下壁板的热气动弹性稳定性理论分析   总被引:2,自引:0,他引:2  
叶柳青  叶正寅 《力学学报》2018,50(2):221-232
针对激波主导流动下弹性壁板的热气动弹性稳定性分析问题,建立了基于当地活塞流理论的分析模型,并用数值仿真方法来验证其正确性. 首先基于Hamilton原理和Von-Karman大变形理论,建立壁板的热气动弹性运动方程,其中假设壁板受热后温度均匀分布,激波前后区域的气动力模型采用当地一阶活塞流理论;利用Galerkin方法将具有连续参数系统的偏微分颤振方程离散为有限个自由度的常微分方程;基于李雅普诺夫间接法将非线性颤振方程组在平衡位置处进行线化,再用Routh-Hurwits判据来判断线性系统的稳定性,从而来推论出非线性颤振系统的气动弹性稳定性. 在时域中采用龙格--库塔法对非线性颤振方程进行数值积分,得到壁板非线性颤振响应的时间历程,与理论分析结果进行对比. 研究结果表明,壁板受到斜激波冲击时,更容易发生颤振失稳,并且激波强度越大,极限环幅值和频率越大;激波主导流场中的壁板失稳边界不同于传统单纯超声速气流中壁板颤振的失稳边界;只有在斜激波前后不同的动压值都满足颤振稳定性边界的条件下,壁板才可能保持其气动弹性稳定性.   相似文献   

7.
针对激波主导流动下弹性壁板的热气动弹性稳定性分析问题,建立了基于当地活塞流理论的分析模型,并用数值仿真方法来验证其正确性.首先基于Hamilton原理和Von-Karman大变形理论,建立壁板的热气动弹性运动方程,其中假设壁板受热后温度均匀分布,激波前后区域的气动力模型采用当地一阶活塞流理论;利用Galerkin方法将具有连续参数系统的偏微分颤振方程离散为有限个自由度的常微分方程;基于李雅普诺夫间接法将非线性颤振方程组在平衡位置处进行线化,再用Routh-Hurwits判据来判断线性系统的稳定性,从而来推论出非线性颤振系统的气动弹性稳定性.在时域中采用龙格-库塔法对非线性颤振方程进行数值积分,得到壁板非线性颤振响应的时间历程,与理论分析结果进行对比.研究结果表明,壁板受到斜激波冲击时,更容易发生颤振失稳,并且激波强度越大,极限环幅值和频率越大;激波主导流场中的壁板失稳边界不同于传统单纯超声速气流中壁板颤振的失稳边界;只有在斜激波前后不同的动压值都满足颤振稳定性边界的条件下,壁板才可能保持其气动弹性稳定性.  相似文献   

8.
强非线性振动系统求解的两种解析方法   总被引:2,自引:0,他引:2  
本文给出了拟保守系统的渐近解,该解是在非线性解的基础上的摄动解,因而可求解强非线性振动系统。文中利用此解研究了具有强非对称恢复力项的Liénard方程的极限环问题,给出了各种特殊情况下该方程的极限环幅值的计算公式,并讨论了非线性恢复力项对极限环的影响。此外,本文提出了一种改进的谐波平衡法,该方法是谐波平衡法与伽辽金方法结合的产物。  相似文献   

9.
大型飞机操纵面极限环颤振特性研究   总被引:1,自引:0,他引:1  
操纵面间隙会引起结构非线性,容易诱发极限环颤振。根据设计需要,考虑操纵面中心间隙的影响,采用最小状态拟合技术对频域非定常气动力进行有理函数拟合,采用分段函数描述间隙引起的非线性刚度,研究操纵面在间隙作用下的极限环颤振响应的行为特点。结果表明,由于中心间隙的影响,系统会在低于线性颤振速度时就产生极限环振荡,同时,振荡幅值随飞行速度或中心间隙的增大而增大。  相似文献   

10.
本文给出了以环肋加强的圆柱壳在液压作用下屈曲形态和临界载荷的计算方法.根据组合结构的方法,建立了一组肋和肋间壳段的稳定微分方程组.在肋的截面高度、偏心距、截面总面积ΣF_r、总抗弯刚度ΣE_rI_(G_ra)不变的前提下,而使环肋的数目趋于无穷大,从而得到了作为组合的环肋加强壳的初次近似的正交各向异性壳模型及其弹性关系.可以进一步寻求方程组的级数解,其首项代表零阶近似解,亦即上述等效正交各向异性壳的解,其余各项代表逐次渐近的修正解,或等效壳和真实的环肋加强组合壳解的误差.根据误差的估计可以给出简化为等效各向异性壳的判据.最后给出了算例并与其它作者的方法进行了比较.计算结果表明与实验符合得很好.  相似文献   

11.
Peng Li  Yiren Yang  Li Lu 《Meccanica》2014,49(12):2797-2815
This paper is aimed at presenting the nonlinear flutter peculiarities of a cantilevered plate with motion-limiting constraints in subsonic flow. A non-smooth free-play structural nonlinearity is considered to model the motion constraints. The governing nonlinear partial differential equation is discretized in space and time domains by using the Galerkin method. The equilibrium points and their stabilities are presented based on qualitative analysis and numerical studies. The system loses its stability by flutter and undergoes the limit cycle oscillations (LCOs) due to the nonlinearity. A heuristic analysis scheme based on the equivalent linearization method is applied to theoretical analysis of the LCOs. The Hopf and two-multiple semi-stable limit cycle bifurcation bifurcations are supercritical or subcritical, which is dependent on the location of the motion constraints. For some special cases the bifurcations are, interestingly, both supercritical and subcritical. The influence of varying parameters on the dynamics is discussed in detail. The results predicted by the analysis scheme are in good agreement with the numerical ones.  相似文献   

12.
The usefulness of flutter as a design metric is diluted for wings with destabilizing (softening) nonlinearities, as a stable high-amplitude limit cycle (subcritical) may exist for flight speeds well below the flutter point. It is thus desired to design aeroelastic structures such that the post-flutter behavior is as benign (i.e., supercritical) as possible, among the other constraints commonly considered in the optimization process. In order to account for these metrics in an accurate and efficient manner, direct tools are utilized to first locate the Hopf-point (flutter speed), and then to obtain a nonlinear perturbation solution via the method of multiple scales. The latter scheme provides a scalar variable whose sign and magnitude dictate the nature of the limit cycle. The accuracy of these methods is demonstrated with a high-aspect-ratio highly flexible wing, modeled with nonlinear beam finite elements and the ONERA dynamic stall tool. Stiffness and inertial design variables are allowed to vary spatially throughout the wing, in order to conduct gradient-based optimization of the limit cycle under flutter and mass constraints. The resulting wing structure demonstrates strongly supercritical behavior, as well as several design conflicts between linear (flutter) and nonlinear (limit cycles) sensitivities, which are not present in the uniform baseline wing.  相似文献   

13.
The Hopf bifurcations of an airfoil flutter system with a cubic nonlinearity are investigated, with the flow speed as the bifurcation parameter. The center manifold theory and complex normal form method are Used to obtain the bifurcation equation. Interestingly, for a certain linear pitching stiffness the Hopf bifurcation is both supercritical and subcritical. It is found, mathematically, this is caused by the fact that one coefficient in the bifurcation equation does not contain the first power of the bifurcation parameter. The solutions of the bifurcation equation are validated by the equivalent linearization method and incremental harmonic balance method.  相似文献   

14.
Based on the piston theory of supersonic flow and the energy method, the flutter motion equations of a two-dimensional wing with cubic stiffness in the pitching direction are established. The aeroelastic system contains both structural and aerodynamic nonlinearities. Hopf bifurcation theory is used to analyze the flutter speed of the system. The effects of system parameters on the flutter speed are studied. The 4th order Runge-Kutta method is used to calculate the stable limit cycle responses and chaotic motions of the aeroelastic system. Results show that the number and the stability of equilibrium points of the system vary with the increase of flow speed. Besides the simple limit cycle response of period 1, there are also period-doubling responses and chaotic motions in the flutter system. The route leading to chaos in the aeroelastic model used here is the period-doubling bifurcation. The chaotic motions in the system occur only when the flow speed is higher than the linear divergent speed and the initial condition is very small. Moreover, the flow speed regions in which the system behaves chaos axe very narrow.  相似文献   

15.
操纵面间隙会引起结构非线性,容易诱发极限环颤振。根据设计需要,考虑操纵面中心间隙的影响,采用最小状态拟合技术对频域非定常 气动力进行有理函数拟合,采用分段函数描述间隙引起的非线性刚度,研究操纵面在间隙作用下的极限环颤振响应的行为特点。结果表明,由于 中心间隙的影响,系统会在低于线性颤振速度时就产生极限环振荡,同时,振荡幅值随飞行速度或中心间隙的增大而增大。  相似文献   

16.
Effects of engine placement on flutter characteristics of a very flexible high-aspect-ratio wing are investigated using the code NATASHA (Nonlinear Aeroelastic Trim And Stability of HALE Aircraft). Gravity for this class of wings plays an important role in flutter characteristics. In the absence of aerodynamic and gravitational forces and without an engine, the kinetic energy of the first two modes are calculated. Maximum and minimum flutter speed locations coincide with the area of minimum and maximum kinetic energy of the second bending and torsion modes. Time-dependent dynamic behavior of a turboshaft engine (JetCat SP5) is simulated with a transient engine model and the nonlinear aeroelastic response of the wing to the engine’s time-dependent thrust and dynamic excitation is presented. Below the flutter speed, at the wing tip and behind the elastic axis, the impulse engine excitation leads to a stable limit cycle oscillation; and for the ramp kind of excitation, beyond the flutter speed, at 75 % span, behind the elastic axis, it produces chaotic oscillation in the wing. Both the excitations above the flutter speed are stabilized, inboard of the wing.  相似文献   

17.
Limit cycle oscillations of two-dimensional panels in low subsonic flow   总被引:1,自引:0,他引:1  
Limit cycle oscillations of a two-dimensional panel in low subsonic flow have been studied theoretically and experimentally. The panel is clamped at its leading edge and free at its trailing edge. A structural non-linearity arises in both the bending stiffness and the mass inertia. Two-dimensional incompressible (linear) vortex lattice aerodynamic theory and a corresponding reduced order aerodynamic model were used to calculate the linear flutter boundary and also the limit cycle oscillations (that occur beyond the linear flutter boundary).  相似文献   

18.
Dynamic aeroelastic behavior of a joined-wing PrandtlPlane configuration is investigated herein. The baseline model is obtained from a configuration previously designed by partner universities through several multidisciplinary optimizations and ad hoc analyses, including detailed studies on the layout of control architecture. An equivalent structural model has then been adopted to qualitatively retain similar aeroelastic properties.Flutter and post-flutter regimes, including limit cycle oscillations (LCOs), are studied. A detailed analysis of the energy transfer between fluid and structure is carried out; the areas in which energy is extracted from the fluid are identified to gain insights on the mechanism leading to the aeroelastic instability. Starting from an existing design of control surfaces on the baseline configuration, freeplay is also considered and its effects on the aeroelastic stability properties of the joined-wing system are investigated for the first time.Both cantilever and free flying configurations are analyzed. Fuselage inertial effects are modeled and the aeroelastic properties are studied considering plunging and pitching rigid body modes. For this configuration a positive interaction between elastic and rigid body modes yields a flutter-free design (within the range of considered airspeeds).To understand the sensitivity of the system and gain insight, fuselage mass and moment of inertia are selectively varied. For a fixed pitching moment of inertia, larger fuselage mass favors body freedom flutter. When the moment of inertia is varied, a change of critical properties is observed. For smaller values the pitching mode becomes unstable, and coalescence is observed between pitching and the first elastic mode. Increasing pitching inertia, the above criticality is postponed; meanwhile, the second elastic mode becomes unstable at progressively lower speeds. For larger inertial values “cantilever” flutter properties, having coalescence of first and second elastic modes, are recovered.  相似文献   

19.
本文利用数字仿真技术,对结构非线性颤振半主动抑制-颤振驯化方案进行了探讨,仿真结果表明,对于一定的结构非线性类型和参数,利用非线性颤振的极限环特性,可使系统的颤振响应被抑制在幅值很小的稳定域内,从而达到减缓颤振的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号