首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nitroxide-mediated polymerization of styrenic monomers containing oligo(ethylene glycol) (OEGn) moieties was chosen for the preparation of biocompatible polymer brushes tethered to silicon oxide surfaces due to the broad range of monomer structures available and the use of a nonmetallic initiator. These surfaces were characterized by near-edge X-ray absorption fine structure and water contact angle measurements. The biocompatibility of these grown polymer brushes was studied and compared with deposited assemblies of surface-bound OEGn-terminated silanes with selected chain lengths. Grown polymer brushes with short OEGn side chains suppressed protein adsorption significantly more than the deposited assemblies of short OEGn chains, and this was attributed to higher surface coverage by the brushes. Cell adhesion studies confirmed that OEGn-containing polymer brushes are particularly effective in preventing nonspecific adhesion. Studies of protein adsorption and cell localization carried out with specific ligands on surfaces patterned demonstrated the potential of these surface-tethered polymer brushes for the formation of micro- and nanoscale devices.  相似文献   

2.
Here we report a study into controlling the polymerization of mono-hydroxy and mono-methoxy terminated oligo(ethylene glycol) methacrylates (HOEGMA and MeOEGMA, respectively) from functionalised, planar surfaces via atom transfer radical polymerization (ATRP). The effects of initiator structure, initiator density, temperature, and monomer ratios have been investigated for these polymerizations. The polymer brushes grown in this way were found to convey protein resistance to the underlying inorganic substrates, prone to facile protein adsorption in their native state.  相似文献   

3.
A detailed study of argon plasma-induced graft-polymerisation of ethylene glycol methacrylate phosphate (EGMP) on polyethylene (PE) substrates is presented. The process consists of four steps: (a) plasma pre-activation of the PE substrates; (b) immersion in an EGMP solution; (c) argon plasma-induced graft-polymerisation; (d) washing and drying of the samples. Influence of the solution and plasma parameters on the process efficiency, evaluated in terms of amount of grafted polymer and coverage uniformity, is investigated. The plasma-induced graft-polymerisation of EGMP is then followed by sample weighting, contact angle measurements, attenuated total reflection infrared (ATR-IR) spectroscopy and X-ray photoelectron spectroscopic (XPS) analysis. Finally, flame-retardant properties of modified PE substrates are evaluated by limiting oxygen index (LOI) measurements.  相似文献   

4.
Ionic‐liquid‐containing polymer films were prepared by swelling poly(ethylene glycol)‐based networked polymers having lithium salt structures with an ionic liquid, 1‐ethyl‐3‐methylimidazolium bis(fluorosulfonyl)imide (EMImFSI), or with an EMImFSI solution of lithium bis(trifluoromethanesulfonyl) imide (LiTFSI). Their fundamental physical properties were investigated. The networked polymer films having lithium salt structures were prepared by curing a mixture of poly(ethylene glycol) diglycidyl ether and lithium 3‐glycidyloxypropanesulfonate or lithium 3‐(glycidyloxypropanesulfonyl)(trifluoromethanesulfonyl)imide with poly(ethylene glycol) bis(3‐aminopropyl) terminated. The obtained ionic‐liquid‐containing films were flexible and self‐standing. They showed high ionic conductivity at room temperature, 1.16–2.09 S/m for samples without LiTFSI and 0.29–0.43 S/m for those with 10 wt % LiTFSI. Their thermal decomposition temperature was above 220 °C, and melting temperature of the ionic liquid incorporated in the film was around ?16 °C. They exhibited high safety due to good nonflammability of the ionic liquid. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
We have carried out a neutron powder diffraction study of deuterated ethylene glycol (1,2-ethanediol), and deuterated ethylene glycol monohydrate with the D2B high-resolution diffractometer at the Institut Laue-Langevin. Using these data, we have refined the complete structure, including all hydrogen atoms, of the anhydrous phase at 220 K. In addition, we have determined the structure of ethylene glycol monohydrate at 210 K using direct space methods. Anhydrous ethylene glycol crystallizes in space-group P2(1)2(1)2(1) with four formula units in a unit-cell of dimensions a = 5.0553(1) ?, b = 6.9627(1) ?, c = 9.2709(2) ?, and V = 326.319(8) ?(3) [ρ(calc)(deuterated) = 1386.26(3) kg m(-3)] at 220 K. Ethylene glycol monohydrate crystallizes in space-group P2(1)/c with four formula units in a unit-cell of dimensions a = 7.6858(3) ?, b = 7.2201(3) ?, c = 7.7356(4) ?, β = 92.868(3)°, and V = 428.73(2) ?(3) [ρ(calc)(deuterated) = 1365.40(7) kg m(-3)] at 210 K. Both the structures are characterized by the gauche conformation of the ethylene glycol molecule; however, the anhydrous phase contains the tGg' rotamer (or its mirror, g'Gt), whereas the monohydrate contains the gGg' rotamer. In the monohydrate, each water molecule is tetrahedrally coordinated, donating two hydrogen bonds to, and accepting two hydrogen bonds from the hydroxyl groups of neighboring ethylene glycol molecules. There are substantial differences in the degree of weak C-D···O hydrogen bonding between the two crystals, which calls into question the role of these interactions in determining the conformation of the ethylene glycol molecule.  相似文献   

6.
Films of immiscible blends of (PS) and poly(methyl methacrylate) (PMMA) were characterized by contact-angle measurements with sessile drop and atomic force microscopy (AFM). These blends showed a linear dependence of the contact angles on the composition, as predicted by Cassie's equation for ideal surfaces. The surface structure investigated by AFM showed low roughness and phase-separation features. The ratio between the drop radius and the roughness amounted to the order of 104–105. This magnitude seemed to be sufficient to put the PS/PMMA films close to ideality. Upon sulfonation, the wettability and the microscopic surface roughness of the PS/PMMA blends increased. The treatment with sulfuric acid yielded sulfonated PS domains on the surface, causing an increase in the surface wettability. The SO3 groups were evidenced by X-ray photoelectron spectroscopy. The sulfonation of the PS/PMMA blends enables the formation of multiphase surfaces with hydrophobic, charged and polar domains. Received: 11 December 2000 Accepted: 6 April 2001  相似文献   

7.
Visible-light transparent high-quality substrate-supported poly(2,3-benzofuran) (PBF) film has been successfully electrosynthesized by direct anodic oxidation of 2,3-benzofuran on stainless steel sheet in boron trifluoride diethyl etherate (BFEE) containing 10% poly(ethylene glycol) (PEG) with molar mass of 400 (by volume). The oxidation potential of 2,3-benzofuran in this medium was measured to be only 1.0 V vs. SCE, which is lower than that determined in acetonitrile + 0.1 M Bu4NBF4 (1.2 V vs. SCE). The PBF films obtained in this media showed good electrochemical behaviors and good thermal stability with conductivity of 10−2 S cm−1, and the doping level of as-prepared PBF films was determined to be only 8.9%. The structure and morphology of the polymer were investigated by UV-vis, infrared spectroscopy and scanning electron microscopy (SEM), respectively. To the best of our knowledge, this is the first case for the syntheses of PBF films.  相似文献   

8.
Facile synthesis and detailed characterization of photo-polymerizable and biocompatible poly(ethylene glycol) dimethacrylates (PEGDM) and their hydrogels are described. Combined analyses of 1H NMR and MALDI-TOF MS confirmed the formation of prepolymers of high purity and narrow mass distribution (PD < 1.02). A systematic investigation into the structure and mechanical properties of PEGDM hydrogels was performed to characterize the relationships between the network structure and gel properties. Small-angle neutron scattering was used to characterize the structural features of hydrogels with respect to their semidilute solution precursors. A well-defined structural length scale (correlation length) manifested as a maximum in the scattering intensity was observed for hydrogels derived from high molecular mass PEGDMs and/or high oligomer mass fractions. Hydrogels derived from lower molecular mass PEGDMs and/or low oligomer mass fractions exhibited multiple correlation lengths suggesting the formation of inhomogeneous gel structures. The shear moduli, determined from uniaxial compression measurement, showed that the gel structures correlate well with the gel mechanical properties.  相似文献   

9.
Poly(ethylene glycol) diacrylate/polyvinyl alcohol(PEGDA/PVA) hydrogels were prepared from PEGDA and PVA as precurors by means of single UV radiation(UV ra.), UV radiation followed by high energy electron beam irradiation(Irra.), UV radiation followed by freeze-thawing(FT) or UV ra. and Irra. followed by FT, respectively. 2-Hydroxy-1-[4-(hydroxyethoxy)phenyl]-2-methyl-1-propanone(Irgacure 2959) was used as a photoinitiator. The effects of the various methods on the swelling and mechanical properties of the hydrogels were investigated. The results show that hydrogels made by UV ra. plus high energy electron beam irradiation followed by FT showed a higher crosslinking density and a larger tensile strength than those made by the other methods.  相似文献   

10.
The synthesis and characterization of styrene‐based polymers and copolymers containing pendant tetra(ethylene glycol) and phosphorylcholine groups is reported. These polymers are obtained via radical polymerization reactions using α,α′‐azobis(isobutyronitrile) as the initiator, and are developed as protective biocompatible coatings for implantable biosensors. Cell morphology studies show that none of the synthesized polymers and copolymers are toxic, and that the rate of cell growth can be tuned by changing the monomer composition. The presence of tetra(ethylene glycol) groups in the coatings lowers the protein adsorption, thereby influencing the rate of cell growth. An equally profound effect is observed when a low percentage of phosphorylcholine groups is present in the polymers. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 468–474, 2001  相似文献   

11.
Novel regular network polyester films were prepared from pyromellitic (X), biphenyltetracarboxylic (U), and 3,3′,4,4′-benzophenonetetracarboxylic (W) dianhydrides and ethylene glycol (2G). Prepolymers prepared by melt polycondensation were cast from DMF solution and successively post-polymerized at 260°C for various times to form a network. The resultant films were transparent, flexible, and insoluble in any solvents. The structure and properties of these network polyester films were compared with those of previously reported network polyester film from trimesic acid (Y) and 2G. Two diffraction peaks appeared in X-ray diffraction curves of 2GY, 2GX, and 2GU films. Peaks of 2GX and 2GU were broader than that of 2GY, suggesting less ordered structure of 2GX and 2GU by the less symmetric aromatic tetracarboxylic acid moieties. Densities of network films decreased with increasing the post-polymerization time. The degree of reaction (the degree of network formation) was estimated by the change of infrared absorption of hydroxyl and methylene groups. The degree of reaction obtained was 95 and 87% for 2GY and 2GX films post-polymerized for 12 h, respectively. Distortion temperature (Th) was measured by a penetration mode of thermomechanical analysis (TMA). Th, was 222 and 240°C for 2GY and 2GW films post-polymerized at 260°C for 12 h, respectively, while it disappeared for 2GX and 2GU films post-polymerized for more than 30 min and 1 h, respectively. Drastic decrease in TMA curves around 400°C corresponded to the rapid weight loss in TG curves due to the thermal decomposition. Young's modulus of network film was 2GX > 2GW = 2GU > 2GY, while the tensile strength and elongation were 2GY > 2GU > 2GW > 2GX. Water absorbing capacity was 2GX > 2GY > undrawn PET, while the alkali resistance was undrawn PET = 2GY > 2GX.  相似文献   

12.
聚乙二醇/羟基磷灰石纳米杂化材料的制备及表征   总被引:2,自引:0,他引:2  
以聚乙二醇单甲醚(MPEG)为原料, 采用先磷酰化再水解的方法合成了聚乙二醇单甲醚磷酸酯(P-MPEG). 以P-MPEG为空间位阻剂, 采用共沉淀法合成了内核为纳米羟基磷灰石(nHA)、 壳层为MPEG链的纳米杂化材料. 用傅里叶变换红外光谱(FTIR)、 X射线衍射(XRD)、 透射电子显微镜(TEM)和激光粒度分析(LPSA)对材料结构进行了表征. 结果表明, 所合成的杂化材料不仅能在水中再分散, 而且可以在甲醇和二甲基甲酰胺(DMF)等有机溶剂中再分散.  相似文献   

13.
The state of the sorbed water, including the water that cannot be removed by the reduced pressure and water-sorption processes, into poly(ethylene glycol) dimethyl ether (PEG-DME) film was examined by Fourier transform infrared (FT-IR) spectroscopy. The spectrum of the irremovable water could be obtained without a thermal treatment frequently used as the dehydration procedure. It was found that the irremovable water mainly existed in the crystalline region of PEG-DME film, and that its hydrogen-bonding (HB) structure differed from that of the water sorbed from the air. Moreover, the amount of water having the same HB structure as the irremovable water increased with the water contents. These findings could not be revealed by the spectrum of the sorbed water obtained by the conventional dehydration procedure. The experimental procedure examined here allowed us to investigate the true aspects of the irremovable water and the water-sorption processes.  相似文献   

14.
A novel cell-impermeable zinc sensor was synthesized by incorporating poly(ethylene glycol)(PEG) to N-(8-quinolyl)-p-aminobenzenesulfonamide (HQAS) group.The polymeric zinc sensor combines both valuable features of HQAS and PEG.The HQAS of the sensor has the similar functions to TSQ,and exhibits a good fluorescence response to Zn2+ but poor fluorescence responses to other metal ions.The PEG chain can prevent the sensor to permeate healthy cell membrane.The stained experiments with the yeast cells as model showed that the sensor cannot stain the healthy yeast cells,but only the damaged or died yeast cells. These results indicated the novel zinc probe was a typical cell-impermeable zinc sensor.  相似文献   

15.
In an effort to improve the hydrophilicity of bile acid containing polymers, we have synthesized new methacrylate monomers by incorporating ethylene glycol and oligo(ethylene glycol) spacers of different lengths between cholic acid and methacrylate residues. The monomers were subsequently polymerized by free radical reaction in solution. The methyl ester protecting groups on the cholic acid residue were selectively hydrolyzed to restore the carboxylic acid group of cholic acid. Water absorption tests showed that the hydrophilicity of the polymers was improved with increasing length of oligo(ethylene glycol) spacers and upon restoration of the carboxylic acid group of the cholic acid residue.  相似文献   

16.
We describe the formation and characterization of surface-passivating poly(ethylene glycol) (PEG) films on indium tin oxide (ITO) glass substrates. PEG chains with a molecular weight of 2000 and 5000 D were covalently attached to the substrates in a systematic approach using different coupling schemes. The coupling strategies included the direct grafting with PEG-silane, PEG-methacrylate, and PEG-bis(amine), as well as the two-step functionalization with aldehyde-bearing silane films and subsequent coupling with PEG-bis(amine). Elemental analysis by X-ray photoelectron spectroscopy (XPS) confirmed the successful surface modification, and XPS and ellipsometry provided values for film thicknesses. XPS and ellipsometry thickness values were almost identical for PEG-silane films but differed by up to 400% for the other PEG layers, suggesting a homogeneous layer for PEG-silane but an inhomogeneous distribution for other PEG coatings on the molecularly rough ITO substrates. Atomic force microscopy (AFM) and water contact angle goniometry confirmed the different degrees of surface homogeneity of the polymer films, with PEG-silane reducing the AFM rms surface roughness by 50% and the water contact angle hysteresis by 75% compared to uncoated ITO. The ability of the PEG layers to passivate the substrate against the nonspecific adsorption of biopolymers was tested using fluorescence-labeled immunoglobulin G and DNA oligonucleotides in combination with fluorescence microscopy. The results indicate a positive relationship between film density and homogeneity on one hand and the ability to passivate against biopolymer adhesion on the other hand. The most homogeneous layers prepared with PEG-silane reduced the nonspecific adsorption of fluorescence-labeled DNA by a factor of 300 compared to uncoated ITO. In addition, the study finds that the ratio of film thicknesses derived by ellipsometry and XPS is a useful parameter to quantify the structural integrity of PEG layers on molecularly rough ITO surfaces. The findings may be applied to characterize PEG or other polymeric films on similarly coarse substrates.  相似文献   

17.
Plasma polymer silver composite films were investigated by means of cross section transmission electron microscopy (XTEM). The silver is encapsulated in the form of small particles in a nearly homogeneous plasma polymer matrix. The shape and the size of the particles vary with the polymerization power density. At lower polymerization power density the silver particles appear almost spherical and a three-dimensional particle distribution can be found in the polymer matrix. However the shape of particles at higher power density is more elliptic and the particle distribution is two-dimensional. The different kinds of encapsulation can be interpreted as being due to the different densities and porosities of the plasma polymer matrix.  相似文献   

18.
The analysis of poly(ethylene glycol) (PEG)-containing particles by online single particle aerosol mass spectrometers equipped with laser desorption/ionization (LDI) is reported. We demonstrate that PEG-containing particles are useful in the development of aerosol mass spectrometers because of their ease of preparation, low cost, and inherently recognizable mass spectra. Solutions containing millimolar quantities of PEGs were nebulized and, after drying, the resultant micrometer-sized PEG-containing particles were sampled. LDI (266 nm) of particles containing NaCl and PEG molecules of average molecular weight<500 Da generated mass spectra reminiscent of mass spectra of PEG collected by other mass spectrometer platforms including the characteristic distribution of positive ions (Na+ adducts) separated by the 44 m/z units of the ethylene oxide units separating each degree of polymerization. PEGs of average molecular weight>500 Da were detected from particles that also contained the tripeptide tyrosine-tyrosine-tyrosine or 2,5-dihydroxybenzoic acid, which were added to nebulized solutions to act as matrices to assist LDI using pulsed 266 nm and 355 nm lasers, respectively. Experiments were performed on two aerosol mass spectrometers, one reflectron and one linear, that each utilize two time-of-flight mass analyzers to detect positive and negative ions created from a single particle. PEG-containing particles are currently being employed in the optimization of our bioaerosol mass spectrometers for the application of measurements of complex biological samples, including human effluents, and we recommend that the same strategies will be of great utility to the development of any online aerosol LDI mass spectrometer platform.  相似文献   

19.
The structure of liquid ethylene glycol (EG) was studied by the vibrational spectroscopy and isothermal compressibility techniques. Raman spectra were recorded at 296 K, IR spectra were measured at 296 and 90 K, and the isothermal compressibility was measured over a pressure range of 0.1–300 MPa. The results obtained were compared with analogous data for water. The structure of liquid EG is discussed using the available literature data on the conformation of its molecule in the gas phase and X-ray diffraction data for crystalline EG. It was concluded that liquid EG has a three-dimensional network of hydrogen bonds, which is more uniform and less mobile compared to water, a feature that explains why the viscosity of EG is high.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号