首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let E,F be two Banach spaces,B(E,F),B+(E,F),Φ(E,F),SΦ(E,F) and R(E,F) be bounded linear,double splitting,Fredholm,semi-Frdholm and finite rank operators from E into F,respectively. Let Σ be any one of the following sets:{T ∈Φ(E,F):Index T=constant and dim N(T)=constant},{T ∈ SΦ(E,F):either dim N(T)=constant< ∞ or codim R(T)=constant< ∞} and {T ∈ R(E,F):Rank T=constant< ∞}. Then it is known that Σ is a smooth submanifold of B(E,F) with the tangent space TAΣ={B ∈ B(E,F):BN(A)-R(A) } for any A ∈Σ. However,for ...  相似文献   

2.
Let k be an algebraically closed uncountable field of characteristic 0,g a finite dimensional solvable k-Lie algebraR a noetherian k-algebra on which g acts by k-derivationsU(g) the enveloping algebra of g,A=R*g the crossed product of R by U(g)P a prime ideal of A and Ω(P) the clique of P. Suppose that the prime ideals of the polynomial ring R[x] are completely prime. If R is g-hypernormal, then Ω(P) is classical. Denote by AT the localised ring and let M be a primitive ideal of AT Set Q=PR In this note, we show that if R is a strongly (R,g)-admissible integral domain and if QRQ is generated by a regular g-centralising set of elements, then

(1)M is generated by a regular g-semi-invariant normalising set of elements of cardinald = dim (RQ 0 + ∣XA (P)∣

(2)d gldim(AT ) = Kdim(AT ) = ht(M) = ht(P).  相似文献   

3.
A smooth graph is a connected graph without endpoints; f(n, q) is the number of connected graphs, v(n, q) is the number of smooth graphs, and u(n, q) is the number of blocks on n labeled points and q edges: Wk, Vk, and Uk are the exponential generating functions of f(n, n + k), v(n, n + k), and u(n, n + k), respectively. For any k ? 1, our reduction method shows that Vk can be deduced at once from Wk, which was found for successive k by the computer method described in our previous paper. Again the reduction method shows that Uk must be a sum of powers (mostly negative) of 1 - X and, given this information, we develop a recurrence method well suited to calculate Uk for successive k. Exact formulas for v(n, n + k) and u(n, n + k) for general n follow at once.  相似文献   

4.
Let R be a prime ring, U the Utumi quotient ring of R, C = Z(U) the extended centroid of R, L a non-central Lie ideal of R, H and G non-zero generalized derivations of R. Suppose that there exists an integer n ≥ 1 such that (H(u)uuG(u)) n = 0, for all uL, then one of the following holds: (1) there exists cU such that H(x) = xc, G(x) = cx; (2) R satisfies the standard identity s 4 and char (R) = 2; (3) R satisfies s 4 and there exist a, b, cU, such that H(x) = ax+xc, G(x) = cx+xb and (a − b) n = 0.  相似文献   

5.
Let K = {K 0 ,... ,K k } be a family of convex bodies in R n , 1≤ k≤ n-1 . We prove, generalizing results from [9], [10], [13], and [14], that there always exists an affine k -dimensional plane A k (subset, dbl equals) R n , called a common maximal k-transversal of K , such that, for each i∈ {0,... ,k} and each x∈ R n , where V k is the k -dimensional Lebesgue measure in A k and A k +x . Given a family K = {K i } i=0 l of convex bodies in R n , l < k , the set C k ( K ) of all common maximal k -transversals of K is not only nonempty but has to be ``large' both from the measure theoretic and the topological point of view. It is shown that C k ( K ) cannot be included in a ν -dimensional C 1 submanifold (or more generally in an ( H ν , ν) -rectifiable, H ν -measurable subset) of the affine Grassmannian AGr n,k of all affine k -dimensional planes of R n , of O(n+1) -invariant ν -dimensional (Hausdorff) measure less than some positive constant c n,k,l , where ν = (k-l)(n-k) . As usual, the ``affine' Grassmannian AGr n,k is viewed as a subspace of the Grassmannian Gr n+1,k+1 of all linear (k+1) -dimensional subspaces of R n+1 . On the topological side we show that there exists a nonzero cohomology class θ∈ H n-k (G n+1,k+1 ;Z 2 ) such that the class θ l+1 is concentrated in an arbitrarily small neighborhood of C k ( K ) . As an immediate consequence we deduce that the Lyusternik—Shnirel'man category of the space C k ( K ) relative to Gr n+1,k+1 is ≥ k-l . Finally, we show that there exists a link between these two results by showing that a cohomologically ``big' subspace of Gr n+1,k+1 has to be large also in a measure theoretic sense. Received May 22, 1998, and in revised form March 27, 2000. Online publication September 22, 2000.  相似文献   

6.
For any two points p and q in the Euclidean plane, define LUNpq = { v | vR2, dpv < dpq and dqv < dpq}, where duv is the Euclidean distance between two points u and v . Given a set of points V in the plane, let LUNpq(V) = V ∩ LUNpq. Toussaint defined the relative neighborhood graph of V, denoted by RNG(V) or simply RNG, to be the undirected graph with vertices V such that for each pair p,qV, (p,q) is an edge of RNG(V) if and only if LUNpq (V) = ?. The relative neighborhood graph has several applications in pattern recognition that have been studied by Toussaint. We shall generalize the idea of RNG to define the k-relative neighborhood graph of V, denoted by kRNG(V) or simply kRNG, to be the undirected graph with vertices V such that for each pair p,qV, (p,q) is an edge of kRNG(V) if and only if | LUNpq(V) | < k, for some fixed positive number k. It can be shown that the number of edges of a kRNG is less than O(kn). Also, a kRNG can be constructed in O(kn2) time. Let Ec = {epq| pV and qV}. Then Gc = (V,Ec) is a complete graph. For any subset F of Ec, define the maximum distance of F as maxepqFdpq. A Euclidean bottleneck Hamiltonian cycle is a Hamiltonian cycle in graph Gc whose maximum distance is the minimum among all Hamiltonian cycles in graph Gc. We shall prove that there exists a Euclidean bottleneck Hamiltonian cycle which is a subgraph of 20RNG(V). Hence, 20RNGs are Hamiltonian.  相似文献   

7.
For the non-negative integerg let (M, g) denote the closed orientable 2-dimensional manifold of genusg. K-realizationsP of (M, g) are geometric cell-complexes inP with convex facets such that set (P) is homeomorphic toM. ForK-realizationsP of (M, g) and verticesv ofP, val (v,P) denotes the number of edges ofP incident withv and the weighted vertex-number Σ(val(v, P)-3) taken over all vertices ofP is called valence-valuev (P) ofP. The valence-functionalV, which is important for the determination of all possiblef-vectors ofK-realisations of (M, g), in connection with Eberhard's problem etc., is defined byV(g):=min[v(P)|P is aK-realization of (M,g)]. The aim of the note is to prove the inequality 2g+1≦V(g)≦3g+3 for every positive integerg.  相似文献   

8.
A comparative study of the functional equationsf(x+y)f(xy)=f 2(x)–f 2(y),f(y){f(x+y)+f(xy)}=f(x)f(2y) andf(x+y)+f(xy)=2f(x){1–2f 2(y/2)} which characterise the sine function has been carried out. The zeros of the functionf satisfying any one of the above equations play a vital role in the investigations. The relation of the equationf(x+y)+f(xy)=2f(x){1–2f 2(y/2)} with D'Alembert's equation,f(x+y)+f(xy)=2f(x)f(y) and the sine-cosine equationg(xy)=g(x)g(y) +f(x)f(y) has also been investigated.  相似文献   

9.
10.
We consider the parametric programming problem (Q p ) of minimizing the quadratic function f(x,p):=x T Ax+b T x subject to the constraint Cxd, where x∈ℝ n , A∈ℝ n×n , b∈ℝ n , C∈ℝ m×n , d∈ℝ m , and p:=(A,b,C,d) is the parameter. Here, the matrix A is not assumed to be positive semidefinite. The set of the global minimizers and the set of the local minimizers to (Q p ) are denoted by M(p) and M loc (p), respectively. It is proved that if the point-to-set mapping M loc (·) is lower semicontinuous at p then M loc (p) is a nonempty set which consists of at most ? m,n points, where ? m,n = is the maximal cardinality of the antichains of distinct subsets of {1,2,...,m} which have at most n elements. It is proved also that the lower semicontinuity of M(·) at p implies that M(p) is a singleton. Under some regularity assumption, these necessary conditions become the sufficient ones. Received: November 5, 1997 / Accepted: September 12, 2000?Published online November 17, 2000  相似文献   

11.
Let B be a commutative ring with identity, m, n, and r be positive integers such that r ≤ min{m, n}, a 1, …, a r (resp. b 1, … b r ) be integers such that 1 ≤ a 1< … < a r m (resp. 1 ≤ b 1 < … < b r < n) and U (resp. V) be the most general m × r (resp. r × n) matrix such that s-minors of first a s ? 1 rows (resp. b s ? 1 columns) of U (resp. V) are all zero for s = 1, …, r. We investigate the B-algebra C generated by all the entries of UV and all the r-minors of U and V. We introduce a Hodge algebra structure, to which the discrete Hodge algebra associate is Cohen Macaulay, on C and prove that C is Cohen-Macaulay if so is B. Using this Hodge algebra structure, we show that C is the ring of absolute invariants of a certain group action, compute the divisor class group and the canonical class of C, and give a criterion of Gorenstein property of C in terms of a 1 ,…, a r and b 1…, b r .  相似文献   

12.
V. V. Bavula 《代数通讯》2013,41(8):3219-3261
The left quotient ring (i.e., the left classical ring of fractions) Qcl(R) of a ring R does not always exist and still, in general, there is no good understanding of the reason why this happens. In this article, existence of the largest left quotient ring Ql(R) of an arbitrary ring R is proved, i.e., Ql(R) = S0(R)?1R where S0(R) is the largest left regular denominator set of R. It is proved that Ql(Ql(R)) = Ql(R); the ring Ql(R) is semisimple iff Qcl(R) exists and is semisimple; moreover, if the ring Ql(R) is left Artinian, then Qcl(R) exists and Ql(R) = Qcl(R). The group of units Ql(R)* of Ql(R) is equal to the set {s?1t | s, t ∈ S0(R)} and S0(R) = RQl(R)*. If there exists a finitely generated flat left R-module which is not projective, then Ql(R) is not a semisimple ring. We extend slightly Ore's method of localization to localizable left Ore sets, give a criterion of when a left Ore set is localizable, and prove that all left and right Ore sets of an arbitrary ring are localizable (not just denominator sets as in Ore's method of localization). Applications are given for certain classes of rings (semiprime Goldie rings, Noetherian commutative rings, the algebra of polynomial integro-differential operators).  相似文献   

13.
Using a combinatorial approach that avoids geometry, this paper studies the structure of KT(G/B), the T-equivariant K-theory of the generalized flag variety G/B. This ring has a natural basis (the double Grothendieck polynomials), where is the structure sheaf of the Schubert variety Xw. For rank two cases we compute the corresponding structure constants of the ring KT(G/B) and, based on this data, make a positivity conjecture for general G which generalizes the theorems of M. Brion (for K(G/B)) and W. Graham (for HT*(G/B)). Let [Xλ]KT(G/B) be the class of the homogeneous line bundle on G/B corresponding to the character of T indexed by λ. For general G we prove “Pieri–Chevalley formulas” for the products , , , and , where λ is dominant. By using the Chern character and comparing lowest degree terms the products which are computed in this paper also give results for the Grothendieck polynomials, double Schubert polynomials, and ordinary Schubert polynomials in, respectively K(G/B), HT*(G/B) and H*(G/B).  相似文献   

14.
The content of a polynomial f over a commutative ring R is the ideal c(f) of R generated by the coefficients of f. A commutative ring R is said to be Gaussian if c(fg) = c(f)c(g) for every polynomials f and g in R[X]. A number of authors have formulated necessary and sufficient conditions for R(X) (respectively, R?X?) to be semihereditary, have weak global dimension at most one, be arithmetical, or be Prüfer. An open question raised by Glaz is to formulate necessary and sufficient conditions that R(X) (respectively, R?X?) have the Gaussian property. We give a necessary and sufficient condition for the rings R(X) and R?X? in terms of the ring R in case the square of the nilradical of R is zero.  相似文献   

15.
We apply the Five Functionals Fixed Point Theorem to verify the existence of at least three positive pseudo-symmetric solutions for the discrete three point boundary value problem, ?(g(?u(t-1)))+a(t))f(u(t))=0, for t∈{a+1,…,b+1} and u(a)=0 with u(v)=u(b+2) where g(v)=|v| p-2 v, p>1, for some fixed v∈{a+1,…,b+1} and σ=(b+2+v)/2 is an integer.  相似文献   

16.
Let S(r) denote a circle of circumference r. The circular consecutive choosability chcc(G) of a graph G is the least real number t such that for any r≥χc(G), if each vertex v is assigned a closed interval L(v) of length t on S(r), then there is a circular r‐coloring f of G such that f(v)∈L(v). We investigate, for a graph, the relations between its circular consecutive choosability and choosability. It is proved that for any positive integer k, if a graph G is k‐choosable, then chcc(G)?k + 1 ? 1/k; moreover, the bound is sharp for k≥3. For k = 2, it is proved that if G is 2‐choosable then chcc(G)?2, while the equality holds if and only if G contains a cycle. In addition, we prove that there exist circular consecutive 2‐choosable graphs which are not 2‐choosable. In particular, it is shown that chcc(G) = 2 holds for all cycles and for K2, n with n≥2. On the other hand, we prove that chcc(G)>2 holds for many generalized theta graphs. © 2011 Wiley Periodicals, Inc. J Graph Theory 67: 178‐197, 2011  相似文献   

17.
By the extremal number ex(n; t) = ex(n; {C 3, C 4, . . . , C t }) we denote the maximum size (that is, number of edges) in a graph of order n > t and girth at least gt + 1. The set of all the graphs of order n, containing no cycles of length ≥ t, and of size ex(n; t), is denoted by EX(n; t) = EX(n; {C 3, C 4, . . . , C t }), these graphs are called EX graphs. In 1975, Erdős proposed the problem of determining the extremal numbers ex(n; 4) of a graph of order n and girth at least 5. In this paper, we consider a generalized version of this problem, for t ≥ 5. In particular, we prove that ex(29; 6) = 45, also we improve some lower bounds and upper bounds of ex u (n; t), for some particular values of n and t.  相似文献   

18.
This article presents a spectrum result on maximal partial ovoids of the generalized quadrangle Q(4,q), q even. We prove that for every integer k in an interval of, roughly, size [q2/10,9q2/10], there exists a maximal partial ovoid of size k on Q(4,q), q even. Since the generalized quadrangle W(q), q even, defined by a symplectic polarity of PG(3,q) is isomorphic to the generalized quadrangle Q(4,q), q even, the same result is obtained for maximal partial ovoids of W(q), q even. As equivalent results, the same spectrum result is obtained for minimal blocking sets with respect to planes of PG(3,q), q even, and for maximal partial 1-systems of lines on the Klein quadric Q+(5,q), q even.  相似文献   

19.
20.
Let brk(C4;Kn, n) be the smallest N such that if all edges of KN, N are colored by k + 1 colors, then there is a monochromatic C4 in one of the first k colors or a monochromatic Kn, n in the last color. It is shown that brk(C4;Kn, n) = Θ(n2/log2n) for k?3, and br2(C4;Kn, n)≥c(n n/log2n)2 for large n. The main part of the proof is an algorithm to bound the number of large Kn, n in quasi‐random graphs. © 2010 Wiley Periodicals, Inc. J Graph Theory 67: 47‐54, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号