首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase diagram for a system of model anisotropic particles with six attractive patches in an octahedral arrangement has been computed. This model for a relatively narrow value of the patch width where the lowest-energy configuration of the system is a simple cubic crystal. At this value of the patch width, there is no stable vapor-liquid phase separation, and there are three other crystalline phases in addition to the simple cubic crystal that is most stable at low pressure. First, at moderate pressures, it is more favorable to form a body-centered-cubic crystal, which can be viewed as two interpenetrating, and almost noninteracting, simple cubic lattices. Second, at high pressures and low temperatures, an orientationally ordered face-centered-cubic structure becomes favorable. Finally, at high temperatures a face-centered-cubic plastic crystal is the most stable solid phase.  相似文献   

2.
The effect of pressure on the structure and reorientational motion of molecules in orientationally disordered (OD) crystalline phase of cubane has been investigated in detail using variable shape molecular simulations in constant-pressure constant-temperature ensemble. Complete orientational ordering occurs at a pressure of 1.0 GPa and the OD phase transforms to an orientationally ordered phase at this pressure. The transition is associated with a kink in the variation of structural parameters such as cell parameters, unit-cell volume, and interaction energy. This transition is also associated with an anomaly in specific heat. Above this transition pressure, the structural quantities display only smaller changes with further increase in pressure. The structure of high-pressure orientationally ordered (HPOO) phase has been characterized using radial distribution functions and orientational distribution function. From detailed analysis of the structure of HPOO phase we conclude that it is isostructural with low-temperature orientationally ordered phase. The OD phase has four times larger compressibility than the HPOO phase.  相似文献   

3.
The equilibrium permittivity epsilon(s) and the dielectric relaxation spectra of supercooled liquid D-sorbitol were measured during its crystallization to orientationally disordered or ordered phases depending on the sample preparation procedure at several fixed temperatures up to a period of 6 days. The epsilon(s) measurements showed that when the sample was contaminated by a minute amount of crystals, it crystallized to an ordered phase. When the liquid was not contaminated, the sample crystallized to an orientationally disordered phase. When supercooled D-sorbitol was kept close to its T(g), its dielectric spectra did not change over a period of 138.5 h. It was found that the Johari-Goldstein (JG) relaxation rate of the orientationally disordered crystalline phase is higher in comparison with that of the supercooled liquid, the spectrum broader, and the relaxation strength lower. Its glasslike transition temperature is higher than T(g) of the liquid. The results on crystallization showed that the structural changes occurring at a temperature where the alpha relaxation emerges from the JG relaxation affects the crystallization kinetics of the liquid.  相似文献   

4.
The vapor-liquid coexistence boundaries of fluids composed of particles interacting with highly directional patchy interactions, in addition to an isotropic square well potential, are evaluated using grand canonical Monte Carlo simulations combined with the histogram reweighting and finite size scaling methods. We are motivated to study this more complicated model for two reasons. First, it is established that the reduced widths of the metastable vapor-liquid coexistence curve predicted by a model with only isotropic interparticle interactions are much too narrow when compared to the experimental phase behavior of protein solutions. Second, interprotein interactions are well known to be "patchy." Our results show that at a constant total areal density of patches, the critical temperature and the critical density increase monotonically with an increasing number of uniformly spaced patches. The vapor-liquid coexistence curves plotted in reduced coordinates (i.e., the temperature and the density scaled by their respective critical values) are found to be effectively independent of the number of patches, but are much broader than those found for the isotropic models. Our findings for the reduced width of the coexistence curve are almost in quantitative agreement with the available experimental data for protein solutions, stressing the importance of patchiness in this context.  相似文献   

5.
Using classical density functional theory, the forces between two cylindrical nanoparticles in a liquid crystal solvent are calculated. Both the nematic and isotropic phases of the solvent are considered. In the nematic phase, the interaction is highly anisotropic. At short range, changes in the defect structure around the cylinders leads to a complex interaction between them. In the isotropic phase, an attractive interaction arises due to overlap between halos of ordered fluid adsorbed on the surfaces of the cylinders.  相似文献   

6.
The effect of confinement on phase behavior of simple fluids is still an area of intensive research. In between experiment and theory, molecular simulation is a powerful tool to study the effect of confinement in realistic porous materials, containing some disorder. Previous simulation works aiming at establishing the phase diagram of a confined Lennard-Jones-type fluid, concentrated on simple pore geometries (slits or cylinders). The development of the Gibbs ensemble Monte Carlo technique by Panagiotopoulos [Mol. Phys. 61, 813 (1987)], greatly favored the study of such simple geometries for two reasons. First, the technique is very efficient to calculate the phase diagram, since each run (at a given temperature) converges directly to an equilibrium between a gaslike and a liquidlike phase. Second, due to volume exchange procedure between the two phases, at least one invariant direction of space is required for applicability of this method, which is the case for slits or cylinders. Generally, the introduction of some disorder in such simple pores breaks the initial invariance in one of the space directions and prevents to work in the Gibbs ensemble. The simulation techniques for such disordered systems are numerous (grand canonical Monte Carlo, molecular dynamics, histogram reweighting, N-P-T+test method, Gibbs-Duhem integration procedure, etc.). However, the Gibbs ensemble technique, which gives directly the coexistence between phases, was never generalized to such systems. In this work, we focus on two weakly disordered pores for which a modified Gibbs ensemble Monte Carlo technique can be applied. One of the pores is geometrically undulated, whereas the second is cylindrical but presents a chemical variation which gives rise to a modulation of the wall potential. In the first case almost no change in the phase diagram is observed, whereas in the second strong modifications are reported.  相似文献   

7.
The phase behavior of lyotropic rigid-chain liquid crystal polymer was studied by dissipative particle dynamics (DPD) with variations of the solution concentration and temperature. A chain of fused DPD particles was used to represent each mesogenic polymer backbone surrounded with the strongly interacted solvent molecules. The free solvent molecules were modeled as independent DPD particles, where each particle includes a lump of solvent molecules with the volume roughly equal to the solvated polymer segment. The simulation shows that smectic-B (S(B)), smectic-A (S(A)), nematic (N), and isotropic (I) phases exist within certain regions in the temperature and concentration parameter space. The temperature-dependent S(B)∕S(A), S(A)∕N, and N∕I phase transitions occur in the high concentration range. In the intermediate concentration range, the simulation shows coexistence of the anisotropic phases and isotropic phase, where the anisotropic phases can be the S(B), S(A), or N phases. Mole fraction and compositions of the coexisted phases are determined from the simulation, which indicates that concentration of rigid rods in isotropic phase increases as the temperature increases. By fitting the orientational distribution function of the systems, the biphasic coexistence is further confirmed. From the parameter α obtained for the simulation, the distribution of the rigid rods in the two coexistence phases is quantitatively evaluated. By using model and simulation methods developed in this work, the phase diagrams of the lyotropic rigid-chain polymer liquid crystal are obtained. Incorporating the solvent particles in the DPD simulation is critical to predict the phase coexistence and obtain the phase diagrams.  相似文献   

8.
The free energies of the orientationally ordered crystal phase of C60 at low temperatures and the disordered crystal phase at high temperatures are calculated to an accuracy of +/-0.05 kJ/mol using the expanded ensemble Monte Carlo method with the potential model of Sprik et al. [J. Phys. Chem. 96, 2027 (1992)]. The order-disorder transition temperature at zero pressure is determined directly from these free energies, and is found to be consistent with the abrupt changes in configurational energy and unit cell size also found in simulation. A modification of the potential results in predictions of the transition temperature of 257 K and the entropy change of 18.1 J/mol K at this transition, which are in good agreement with the experimental values of 260 K and 19 J/mol K, respectively. The orientational distinguishability in the ordered phase and the indistinguishability in the disordered phase lead to a contribution to the entropy difference of k ln 60, with 60 being the symmetry number of C60. This quantum mechanical correction is important for the accurate prediction of the phase transition properties of the C60 crystals.  相似文献   

9.
A liquid crystalline vanadyl complex has been studied by DSC, polarizing optical microscopy, the reversal current technique, X-ray diffraction and frequency domain dielectric spectroscopy. The compound exhibits three columnar phases: rectangular ordered (Colro), rectangular disordered (Colrd), and hexagonal disordered (Colhd), all of which show a dielectric relaxation process at low frequencies. In the Colro low temperature phase this process seems to be connected with a slow relaxation of polarized polymeric chains inside the columns (mHz frequency range). However, in the Colhd high temperature disordered phase this relaxation is faster (Hz range). It is interesting that the liquid crystalline phases studied show enhanced conductivity which changes by four orders of magnitude from 10-9 S m-1 in the orientationally disordered crystal (an ODIC phase) to 10-5 S m-1 in the Colhd high temperature phase. Such a value of the conductivity is typical for semiconducting materials.  相似文献   

10.
Density of states Monte Carlo simulations have been performed to study the isotropic-nematic (IN) transition of the Lebwohl-Lasher model for liquid crystals. The IN transition temperature was calculated as a function of system size using expanded ensemble density of states simulations with histogram reweighting. The IN temperature for infinite system size was obtained by extrapolation of three independent measures. A subsequent analysis of the kinetics in the model showed that the transition occurs via spinodal decomposition through aggregation of clusters of liquid crystal molecules.  相似文献   

11.
《Soft Materials》2013,11(1):57-69
Abstract

Mesomorphically ordered structures and phase behavior of the mixtures of nicotinic acid (NICA) and dodecylbenzenesulfonic acid (DBSA) were investigated by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and polarized optical microscopy (POM). The POM observations revealed that the NICA–DBSA mixtures spontaneously formed liquid crystalline phases, although both NICA and DBSA were not liquid crystalline molecules. The NICA–DBSA mixtures formed ordered lamellar structures in DBSA‐rich mixtures and hexagonal cylinder structure in NICA‐rich mixtures. The mesomorphically ordered structures and optical anisotropy were caused by hierarchical interactions in the NICA–DBSA mixtures. The phase diagram divided into five regions—optically isotropic disordered phase, optically isotropic lamellar phase, optically anisotropic lamellar phase, optically anisotropic cylinder phase, and crystalline solid phase—is drawn by summarizing the XRD and POM results.  相似文献   

12.
The orientationally ordered crystalline and glassy plastically crystalline phase of cyanoadamantane were investigated using (2)H NMR. Solid-echo line shape, two-dimensional spectrum, and spin-lattice relaxation were analyzed. In both phases, the molecules display solely a rotation around the molecular C(3) symmetry axis. For the orientationally ordered phase, a single correlation time characterizes the motion, and the time constant shows an Arrhenius temperature dependence. In contrast, a broad distribution G[ln(tau)] of correlation times is observed for the glassy plastically crystalline phase that leads to characteristically different NMR features such as "two-phase" spectra and pronounced nonexponential relaxation. The distribution G[ln(tau)] can be derived from a temperature independent distribution of activation energies g(E(a)), with its mean value lying significantly below the activation energy corresponding to the ordered phase. Thus, the molecular uniaxial rotation proves to be a sensitive probe for the energy landscape of the orientationally disordered glassy crystalline phase of cyanoadamantane.  相似文献   

13.
Detailed molecular simulations are carried out to investigate the effect of temperature on orientational order in cubane molecular crystal. We report a transition from an orientationally ordered to an orientationally disordered plastic crystalline phase in the temperature range 425-450 K. This is similar to the experimentally reported transition at 395 K. The nature of this transition is first order and is associated with a 4.8% increase in unit cell volume that is comparable to the experimentally reported unit cell volume change of 5.4% (Phys. Rev. Lett. 1997, 78, 4938). An orientational order parameter, eta(T), has been defined in terms of average angle of libration of a molecular 3-fold axis and the orientational melting has been characterized by using eta(T). The orientational melting is associated with an anomaly in specific heat at constant pressure (C(P)) and compressibility (kappa). The enthalpy of transition and entropy of transition associated with this orientational melting are 20.8 J mol(-1) and 0.046 J mol(-1) K(-1), respectively. The structure of crystalline as well as plastic crystalline phases is characterized by using various radial distribution functions and orientational distribution functions. The coefficient of thermal expansion of the plastic crystalline phase is more than twice that of the crystalline phase.  相似文献   

14.
Grand canonical ensemble Monte Carlo simulation (GCMC) combined with the histogram reweighting technique was used to study the thermodynamic equilibrium of a homopolymer solution between a bulk and a slit pore. GCMC gives the partition coefficients that agree with those from canonical ensemble Monte Carlo simulations in a twin box, and it also gives results that are not accessible through the regular canonical ensemble simulation such as the osmotic pressure of the solution. In a bulk polymer solution, the calculated osmotic pressure agrees very well with the scaling theory predictions both for the athermal polymer solution and the theta solution. However, one cannot obtain the osmotic pressure of the confined solution in the same way since the osmotic pressure of the confined solution is anisotropic. The chemical potentials in GCMC simulations were found to differ by a translational term from the chemical potentials obtained from canonical ensemble Monte Carlo simulations with the chain insertion method. This confirms the equilibrium condition of a polymer solution partition between the bulk and a slit pore: the chemical potentials of the polymer chain including the translational term are equal at equilibrium. The histogram reweighting method enables us to obtain the partition coefficients in the whole range of concentrations based on a limited set of simulations. Those predicted bulk-pore partition coefficient data enable us to perform further theoretical analysis. Scaling predictions of the partition coefficient at different regimes were given and were confirmed by the simulation data.  相似文献   

15.
Structure formation of a perfluoroalkyl terminated liquid crystal molecule was studied by molecular dynamics simulations. Two distinct structures with smectic-C-like layers and with bundles (blocks) of collapsed layers were spontaneously formed depending on the simulation temperatures. The bundles in the latter structure were somewhat positionally ordered (with respect to the small angle spots in its structure function) and orientationally isotropic overall even though the molecules making each bundle were well oriented. These characteristics of the simulated system well correspond to the cubic phase of the real system, and an even more precisely correspond to the proposed cubic structure model with respect to its hierarchical structure.  相似文献   

16.
We discuss a method for calculating free energy differences between disordered and ordered phases of self-assembling systems utilizing computer simulations. Applying an external, ordering field, we impose a predefined structure onto the fluid in the disordered phase. The structure in the presence of the external, ordering field closely mimics the structure of the ordered phase (in the absence of an ordering field). Self-consistent field theory or density functional theory provides an accurate estimate for choosing the strength of the ordering field. Subsequently, we gradually switch off the external, ordering field and, in turn, increase the control parameter that drives the self-assembly. The free energy difference along this reversible path connecting the disordered and the ordered state is obtained via thermodynamic integration or expanded ensemble simulation techniques. Utilizing Single-Chain-in-Mean-Field simulations of a symmetric diblock copolymer melt we illustrate the method and calculate the free energy difference between the disordered phase and the lamellar structure at an intermediate incompatibility chiN=20. Evidence for the first-order character of the order-disorder transition at fixed volume is presented. The transition is located at chi(ODT)N=13.65+/-0.10 for an invariant degree of polymerization of N=14 884. The magnitude of the shift of the transition from the mean field prediction qualitatively agrees with other simulations.  相似文献   

17.
We calculate the global phase diagram using classical statistical mechanics for an isotropic pair potential that has been previously [Rechtsman et al., Phys. Rev. Lett. 95, 228301 (2005)] shown to produce the low-coordinated two-dimensional honeycomb crystal as the ground-state structure. Low-coordinated crystals are of practical interest because they have desirable photonic band-gap properties. The phase diagram is obtained from Helmholtz free energies calculated using thermodynamic integration and Monte Carlo simulations. Our results show that the honeycomb crystal remains stable in the global phase diagram even after temperature effects are taken fully into account. Other stable phases in the phase diagram are high and low density triangular phases and a fluid phase. We find no evidence of gas-liquid or liquid-liquid phase coexistence.  相似文献   

18.
A liquid crystalline vanadyl complex has been studied by DSC, polarizing optical microscopy, the reversal current technique, X-ray diffraction and frequency domain dielectric spectroscopy. The compound exhibits three columnar phases: rectangular ordered (Colro), rectangular disordered (Colrd), and hexagonal disordered (Colhd), all of which show a dielectric relaxation process at low frequencies. In the Colro low temperature phase this process seems to be connected with a slow relaxation of polarized polymeric chains inside the columns (mHz frequency range). However, in the Colhd high temperature disordered phase this relaxation is faster (Hz range). It is interesting that the liquid crystalline phases studied show enhanced conductivity which changes by four orders of magnitude from 10?9 S m?1 in the orientationally disordered crystal (an ODIC phase) to 10?5 S m?1 in the Colhd high temperature phase. Such a value of the conductivity is typical for semiconducting materials.  相似文献   

19.
To elucidate induced smectic A and smectic B phases in binary nematic liquid crystal mixtures, a generalized thermodynamic model has been developed in the framework of a combined Flory-Huggins free energy for isotropic mixing, Maier-Saupe free energy for orientational ordering, McMillan free energy for smectic ordering, Chandrasekhar-Clark free energy for hexagonal ordering, and phase field free energy for crystal solidification. Although nematic constituents have no smectic phase, the complexation between these constituent liquid crystal molecules in their mixture resulted in a more stable ordered phase such as smectic A or B phases. Various phase transitions of crystal-smectic, smectic-nematic, and nematic-isotropic phases have been determined by minimizing the above combined free energies with respect to each order parameter of these mesophases. By changing the strengths of anisotropic interaction and hexagonal interaction parameters, the present model captures the induced smectic A or smectic B phases of the binary nematic mixtures. Of particular importance is the fact that the calculated phase diagrams show remarkable agreement with the experimental phase diagrams of binary nematic liquid crystal mixtures involving induced smectic A or induced smectic B phase.  相似文献   

20.
We computed the complete phase diagram of the symmetrical colloidal electrolyte by means of Monte Carlo simulations. Thermodynamic integration, together with the Einstein-crystal method, and Gibbs-Duhem integration were used to calculate the equilibrium phase behavior. The system was modeled via the linear screening theory, where the electrostatic interactions are screened by the presence of salt in the medium, characterized by the inverse Debye length, kappa (in this work kappasigma=6). Our results show that at high temperature, the hard-sphere picture is recovered, i.e., the liquid crystallizes into a fcc crystal that does not exhibit charge ordering. In the low temperature region, the liquid freezes into a CsCl structure because charge correlations enhance the pairing between oppositely charged colloids, making the liquid-gas transition metastable with respect to crystallization. Upon increasing density, the CsCl solid transforms into a CuAu-like crystal and this one, in turn, transforms into a tetragonal ordered crystal near close packing. Finally, we have studied the ordered-disordered transitions finding three triple points where the phases in coexistence are liquid-CsCl-disordered fcc, CsCl-CuAu-disordered fcc, and CuAu-tetragonal-disordered fcc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号