首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of highly stable inclusion complexes in aqueous solution between the organometallic cobaltocenium cation (Cob(+)) and the hosts cucurbit[7]uril (CB7) and cucurbit[8]uril (CB8) was used to develop a simple method, based on UV-vis titrations, to assay the purity of samples of these two hosts. The equilibrium association constant (K) of the Cob(+)@CB7 complex had been previously reported by our group as 5.7 × 10(9) M(-1) at 25 °C in 50 mM sodium acetate medium. In this work, we determine a K value of 1.9 × 10(8) M(-1) at 25 °C in the same medium for the Cob(+)@CB8 complex. The high stability of these complexes and their decreased molar absorptivity coefficients (at 261 nm), compared to that for free Cob(+), lead to straightforward titration plots when graphing absorbance versus concentration of added CB7 (or CB8) host, at constant Cob(+) concentration.  相似文献   

2.
Inclusion compounds of a macrocyclic cavitand cucurbit[8]uril (CB[8]) with cobalt(III) and nickel(II) complexes of 1,3-diaminopropane (tn) and 1,3-diamino-2-propanol (tmOH) { trans-[Co(tn) 2Cl 2]@CB[8]}Cl.14H 2O ( 1), { trans-[Co(tmOH)(tmO)]@CB[8]}Cl 2.22H 2O ( 2), and { trans-[Ni(tmOH) 2]@CB[8]}Cl 2.22H 2O ( 3) were synthesized and characterized by X-ray single crystal analysis, IR spectroscopy, ESI-MS, and by solid-state stripping voltammetry. The encapsulation of trans-[Co(tn) 2Cl 2] (+) within the cavity of CB[8] stabilizes the complex toward ligand substitution reactions in aqueous solution. The electrochemical study demonstrates that CB[8] prefers the oxidized species in trans-[Co(tn) 2Cl 2] (+)/ trans-[Co(tn) 2Cl 2] (0) and trans-[Co(tmO)(tmOH) 2] (2+)/ trans-[Co(tmO)(tmOH) 2] (+) redox couples, but stabilizes the reduced form trans-[Ni(tmOH) 2] (2+) against the oxidized species. The reversibility of voltammogram shapes evidence that for the inclusion compounds 1- 3 electron transfer reactions proceed within the cavity of the host.  相似文献   

3.
Thionine (ThH+) molecules form monomeric ThH+@CB7 (1: 1) and dimeric 2ThH+@CB8 (2: 1) complexes with cucurbit[7,8]urils (CB7) and (CB8) in water. Unlike the case free ThH+ molecules, the absorption spectrum of the complexes is characterized by a hypsochromic shift of the maximum by 6 and 41 nm for ThH+@CB7 and 2ThH+@CB8, respectively. The ThH+@CB7 complexes exhibit fluorescence, unlike the nonfluorescing 2ThH+@CB8 complexes. The monomeric complexes undergo intersystem crossing to the triplet state with a lifetime of 14 μs. The dimeric complexes have a very low quantum yield of the triplet state. The triplet state of the dimeric complexes was populated by photosensitized excitation by triplet–triplet energy transfer. The lifetime of the triplet state is ≈50 μs.  相似文献   

4.
Photolysis of aqueous solutions of styryl dye 1 in the presence of cucurbit[8]uril (CB[8]) has been studied by optical spectroscopic methods for the molar ratios n = c CB[8]/c 1 in the range of 0 ≤ n ≤ 6. It has been found that the inclusion complexes (1)2@CB[8] dominate in the solution at n ≤ 0.5, whereas the complexes 1@CB[8] dominate at n ≥ 1. The stability constants have been determined for the 1: 1 (log K 1 = 6.2 (L mol?1)) and 2: 1 (log β = 11.9 (L2 mol?2)) complexes. The fluorescence decay kinetics of dye 1 in the presence of CB[8] is two-exponential, with the average lifetime increasing substantially at n ≥ 1. It has been shown that the system can operate in the cyclic mode as an assembler (or supramolecular catalyst) in the photodimerization reaction of dye 1 to form cyclobutane derivative 2. The stability constant of the complex 2@CB[8] (log K 3 = 5.9 (L mol?1)) and the quantum yield of cycloaddition (? ≈ 0.07 at n ≈ 0.5) have been determined.  相似文献   

5.
Rigid linear compounds G1 and G2 , which contained two 4‐phenylpyridinium (PhPy+) units, have been prepared to investigate their binding with cucurbit[8]uril (CB[8]). X‐ray crystallographic structures revealed that in the solid state both compounds were included by CB[8], through antiparallel stacking, to form 2:2 quaternary complexes ( G1 )2@(CB[8])2 and ( G2 )2@(CB[8])2. For the former complex, CB[8] entrapped G1 by holding two heterodimers of its Py+ and benzyl units, which were at opposite ends of the backbone. In contrast, for the first time, the second complex disclosed parallel stacking of two cationic Py+ units of G2 in the cavity of CB[8] in the solid state, despite the generation of important electrostatic repulsion. Isothermal titrations in water afforded high apparent association constants of 4.36×106 and 6.43×106 m ?1 for 1:1 complexes G1 @CB[8] and G2 @CB[8], respectively, and 1H NMR spectroscopy experiments in D2O confirmed a similar stacking pattern to that observed in the solid state. A previous study and crystal structures of the 2:1 complexes formed between three new controls, G3–5 , and CB[8] did not display such unusual stacking of the cationic Py+ unit; this may be attributed to the multivalency of the two CB[8] encapsulation interactions.  相似文献   

6.
The binding dynamics of R-(+)-2-naphthyl-1-ethylammonium cation (NpH(+)) with cucurbit[7]uril (CB[7]) was investigated. Competitive binding with Na(+) or H(3)O(+) cations enabled the reaction to be slowed down sufficiently for the kinetics to be studied by fluorescence stopped-flow experiments. The binding of two Na(+) cations to CB[7], i.e., CB[7]·Na(+) (K(01) = 130 ± 10 M(-1)) and Na(+)·CB[7]·Na(+) (K(02) = 21 ± 2 M(-1)), was derived from the analysis of binding isotherms and the kinetic studies. NpH(+) binds only to free CB[7] ((1.06 ± 0.05) × 10(7) M(-1)), and the association rate constant of (6.3 ± 0.3) × 10(8) M(-1) s(-1) is 1 order of magnitude lower than that for a diffusion-controlled process and much higher than the association rate constant previously determined for other CB[n] systems. The high equilibrium constant for the NpH(+)@CB[7] complex is a consequence of the slow dissociation rate constant of 55 s(-1). The kinetics results showed that formation of a complex between a positively charged guest with CB[n] can occur at a rate close to the diffusion-controlled limit with no detection of a stable exclusion complex.  相似文献   

7.
Inclusion compounds of the macrocyclic cavitand cucurbit[8]uril (CB[8]) with the ruthenium(iii) bis(ethylenediamine) complex {trans-[Ru(en)2Cl2]@CB[8]}Cl·27.5H2O (1), the gold(iii) diethylenetriamine complex {[Au(dien)Cl]@CB[8]}Cl2·11H2O (2), and the gold(iii) and platinum(ii) cyclam complexes (H3O)5{[Au(cyclam)]@CB[8]}Cl8·18H2O (3) and {[Pt(cyclam)]0.11(H2cyclam)0.89@CB[8]}Cl2·16H2O (4), respectively, where cyclam is the tetraazamacrocyclic ligand, were synthesized. The inclusion compounds were synthesized both directly starting from CB[8] and the metal complexes with polyamines (en or dien) and by the two-step method with the use of the cyclic polyamine ligand (cyclam) pre-included into the cavity of the macrocycle. The inclusion compounds were characterized by X-ray diffraction (1, 2, and 4), IR spectroscopy, electrospray ionization mass spectrometry, UV-Vis spectroscopy, and thermogravimetric analysis.  相似文献   

8.
The preparation of amorphous pure organic room-temperature phosphorescence materials with high efficiency is still a challenging task. Herein, we introduce a CB[6] derivative-based supramolecular self-assembling strategy. A water soluble and ellipsoidal deformed CB[6] derivative is used to self-assemble with 4-(4-bromophenyl)-1-methylpyridin-1-ium chloride, bromide and hexafluorophosphate in water. After freeze-drying, the obtained amorphous complexes exhibit brilliant green phosphorescence emission under ambient conditions, with phosphorescence efficiency up to 59%, 60% and 72%, respectively. This is the first report of amorphous non-polymeric pure organic room-temperature phosphorescence with such a high efficiency. In view of the dynamic self-assembling property, the complexes are responsive to water, which could enable information encryption.  相似文献   

9.
Cucurbituril a molecular container (or host) has a rigid hollow interior cavity which is large enough to accommodate, one or more, smaller molecules (or guests). The cavity is accessible through two carbonyl portal openings. Molecules or guests enter the …  相似文献   

10.
CB[n](n=6-8) is a family of synthetic macrocyclic host molecules composed of n glycoluril units, which can be employed as molecular reactor. N-phenyloxypropyl-N'-ethyl-4,4'-bipyridium (1) was designed to form a host-guest inclusion complex with CB[n](n=6-8), subsequently, the bromination reaction of 1 and its corresponding inclusion complexes was investigated in this work. In the case of 1/CB[8], the folded including mode is quite helpful to acquire 1-bormination product completely through intramolecular charge transfer (ICT), and CB[8] can provide a safe bromination environment for 1.  相似文献   

11.
The inclusion of sanguinarine, a biologically active natural benzophenanthridine alkaloid, in cucurbit[7]uril (CB7) was studied by NMR and ground-state absorption spectroscopy, as well as steady-state and time-resolved fluorescence measurements in aqueous solution. The iminium form of sanguinarine (SA(+)) produces very stable 1 : 1 inclusion complex with CB7 (K = 1.0 × 10(6) M(-1)), whereas the equilibrium constant for the binding of the second CB7 is about 3 orders of magnitude smaller. Marked fluorescence quantum yield and fluorescence lifetime enhancements are found upon encapsulation of SA(+) due to the deceleration of the radiationless deactivation from the single-excited state, but the fluorescent properties of 1 : 1 and 1 : 2 complexes barely differ. The equilibrium between the iminium and alkanolamine forms is shifted 3.69 pK unit upon addition of CB7 as a consequence of the preferential encapsulation of the iminium form and the protection of the 6 position of sanguinarine against the nucleophilic attack by hydroxide anion. On the basis of thermodynamic cycle, about 225 M(-1) is estimated for the equilibrium constant of the complexation between the alkanolamine form of sanguinarine (SAOH) and CB7. The confinement in the CB7 macrocycle can be used to impede the nucleophilic addition of OH(-) to SA(+) and to hinder the photooxidation of SAOH.  相似文献   

12.
The photophysical properties of aqueous solution of styryl dye, 4-[(E)-2-(3,4-dimethoxyphenyl)ethenyl]-1-ethylpyridinium perchlorate (dye 1), in the presence of cucurbit[7]uril (CB[7]) was studied by means of fluorescence spectroscopy methods. The production of 1:1 host-guest complexes in the range of CB[7] concentrations up to 16 μM with K = 1.0 × 10(6) M(-1) has been observed, which corresponds to appearance of the isosbestic point at 396 nm in the absorption spectra and a 5-fold increase in fluorescence intensity. The decay of fluorescence was found to fit to double-exponential functions in all cases; the calculated average fluorescence lifetime increases from 145 to 352 ps upon the addition of CB[7]. Rotational relaxation times of dye 1 solutions 119 ± 14 ps without CB[7] and 277 ± 35 ps in the presence of CB[7] have been determined by anisotropy fluorescence method. The comparison of the results of quantum-chemical calculations and experimental data confirms that in the host cavity dye 1 rotates as a whole with CB[7].  相似文献   

13.
The binding interactions in aqueous solution between the dicationic guest diquat (DQ(2+)) and the cucurbit[7]uril (CB7) and cucurbit[8]uril (CB8) hosts were investigated by (1)H NMR, UV/Vis, and fluorescence spectroscopy; mass spectrometry; single-crystal X-ray diffraction; and electrochemical techniques. The binding data were compared with previously reported results for the related paraquat guest (PQ(2+)). DQ(2+) was found to bind poorly (K=350 m(-1)) inside CB7 and more effectively (K=4.8 x 10(4) m(-1)) inside CB8. One-electron reduction led to increased binding affinity with both hosts (K(r)=1 x 10(4) m(-1) with CB7 and K(r)=6 x 10(5) m(-1) for CB8). While (1)H NMR spectroscopic data revealed that DQ(2+) is not fully included by CB7, the crystal structure of the CB8DQ(2+) complex-obtained from single-crystal X-ray diffraction-clearly establishes its inclusion nature. Overall, both diquat and its one-electron reduced radical cation are bound more effectively by CB8 than by CB7. In contrast to this, paraquat exhibits selectivity for CB7, but its radical cation forms a highly stable dimer inside CB8. These differences highlight the pronounced sensitivity of cucurbit[n]uril hosts to guest features such as charge, charge distribution and shape.  相似文献   

14.
We determined the values of Ka for a wide range of host-guest complexes of cucurbit[n]uril (CB[n]), where n = 6-8, using 1H NMR competition experiments referenced to absolute binding constants measured by UV/vis titration. We find that the larger homologues--CB[7] and CB[8]--individually maintain the size, shape, and functional group selectivity that typifies the recognition behavior of CB[6]. The cavity of CB[7] is found to effectively host trimethylsilyl groups. Remarkably, the values of Ka for the interaction of CB[7] with adamantane derivatives 22-24 exceeds 10(12) M(-1)! The high levels of selectivity observed for each CB[n] individually is also observed for the CB[n] family collectively. That is, the selectivities of CB[6], CB[7], and CB[8] toward a common guest can be remarkably large. For example, guests 1, 3, and 11 prefer CB[8] relative to CB[7] by factors greater than 10(7), 10(6), and 3000, respectively. Conversely, guests 23 and 24 prefer CB[7] relative to CB[8] by factors greater than 5100 and 990, respectively. The high levels of selectivity observed individually and collectively for the CB[n] family renders them prime components for the preparation of functional biomimetic self-sorting systems.  相似文献   

15.
The blue fluorescence of acridizinium bromide (ADZ+) and the green fluorescence of 9-aminoacridizinium bromide (AADZ+) in aqueous solutions can be almost entirely switched off upon the double inclusion of these guests in the cavity of cucurbit[8]uril (CB[8]) owing to the formation of a nonfluorescent, noncovalent dimer complex, and then fluorescence can be effectively restored by adding cucurbit[7]uril (CB[7]) to the complex because it competitively extracts the fluorophores out of the CB[8] cavity.  相似文献   

16.
New inclusion compounds containing iron(II), cobalt(III), and nickel(II) complexes with the cyclic polyamine ligands cyclam and cyclen in the macrocyclic cavitand cucurbit[8]uril (CB[8]) were obtained: {trans-[Fe(Cyclam)(CO)(OCHO)]@CB[8]}Cl · 15H2O, {cis-[Co(Cyclen)(H2O)Cl]@CB[8]}Cl2 · 20H2O, and {cis-[Ni(Cyclen)(H2O)Cl]@CB[8]}Cl · 12H2O. According to X-ray diffraction data, the complexes are in the cavity of each CB[8] molecule. The complexes of the above molecular formulas were isolated in the solid state as supramolecular compounds with CB[8] and structurally characterized for the first time.  相似文献   

17.
The macrocyclic host cucurbit[7]uril forms very stable complexes with the diprotonated (K(CB[7])(1) = 1.8 x 10(8) dm(3) mol(-1)), monoprotonated (K(CB[7])(2) = 1.0 x 10(7) dm(3) mol(-1)), and neutral (K(CB[7])(3) = 1.2 x 10(3) dm(3) mol(-1)) forms of the histamine H(2)-receptor antagonist ranitidine in aqueous solution. The complexation behaviour was investigated using (1)H NMR and UV-visible spectroscopy as a function of pH and the pK(a) values of the guest were observed to increase (DeltapK(a1) = 1.5 and DeltapK(a2) = 1.6) upon host-guest complex formation. The energy-minimized structures of the host-guest complexes with the cationic guests were determined and provide agreement with the NMR results indicating the location of the CB[7] over the central portion of the guest. The inclusion of the monoprotonated form of ranitidine slows the normally rapid (E)-(Z) exchange process and generates a preference for the (Z) isomer. The formation of the CB[7] host-guest complex greatly increases the thermal stability of ranitidine in acidic aqueous solution at 50 degrees C, but has no effect on its photochemical reactivity.  相似文献   

18.
《中国化学快报》2022,33(12):5124-5127
Challenges of achieving efficient photodimerization of azaanthracene derivatives remain due to the low selectivity and slow reaction rate. In this paper, cucurbit[10]uril (CB[10]), with the largest rigid and hydrophobic cavity among CB[n]s, was used to affect the photodimerization reaction of four water-soluble 1-(2-)substituted azaanthracene derivatives (1-4). It revealed that 1-4 could form 1:2 host-guest complexes with CB[10] in aqueous solution. Irradiation of 1 in the presence of 0.5 equiv. of CB[10] selectively produced a head-to-tail (anti-HT) photodimer product. As for 2-4, CB[10] acted as a nanoreactor accelerating their photodimerization reaction in water. Our results suggest that photodimerization of azaanthracene derivatives could be promoted by the CB[10]-based host-guest strategy with high efficiency and selectivity.  相似文献   

19.
《中国化学快报》2020,31(5):1235-1238
A supramolecular dimer of doxorubicin (DOX) was constructed via ternary host-guest interactions between cucurbit[8]uril (CB[8]) and tryptophan modified DOX (DOX-Trp, connected with an acid-labile bond) and we demonstrate for the first time that a supramolecular dimer of DOX can be formed upon homo-dimerization by CB[8], which may act as a stimuli pH-responsive, supramolecular DOX dimer prodrug system. This supramolecular DOX dimer transported DOX efficiently and selectively to cancer cells, thereby exhibiting significantly minimized cytotoxicity against noncancerous cells while maintaining effective cytotoxicity against cancer cells. Under this strategy, many other anticancer drugs could be chemically modified and loaded as a dimeric “ammunition” into CB[8] as supramolecular dimer prodrug systems (or a “jet fighter”) for improved cancer therapy.  相似文献   

20.
The self-diffusion of cucurbit[7]uril (CB[7]) and its host-guest complexes in D2O has been examined using pulsed gradient spin-echo nuclear magnetic resonance spectroscopy. CB[7] diffuses freely at a concentration of 2 mM with a diffusion coefficient (D) of 3.07 x 10(-10) m(2) s(-1). At saturation (3.7 mM), CB[7] diffuses more slowly (D = 2.82 x 10(-10) m(2) s(-1)) indicating that it partially self-associates. At concentrations between 2 and 200 mM, CsCl has no effect on the diffusion coefficient of CB[7] (1 mM). Conversely, CB[7] (2 mM) significantly affects the diffusion of 133Cs+ (1 mM), decreasing its diffusion coefficient from 1.86 to 0.83 x 10(-9) m(2) s(-1). Similar changes in the rate of diffusion of other alkali earth metal cations are observed upon the addition of CB[7]. The diffusion coefficient of 23Na+ changes from 1.26 to 0.90 x 10(-9) m(2) s(-1) and 7Li+ changes from 3.40 to 3.07 x 10(-9) m(2) s(-1). In most cases, encapsulation of a variety of inorganic and organic guests within CB[7] decreases their rates of diffusion in D2O. For instance, the diffusion coefficient of the dinuclear platinum complex trans-[[PtCl(NH3)2}2mu-dpzm](2+) (where dpzm is 4,4'-dipyrazolylmethane) decreases from 4.88 to 2.95 x 10(-10) m(2) s(-1) upon encapsulation with an equimolar concentration of CB[7].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号