首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Globular proteins at solid/liquid interfaces   总被引:4,自引:0,他引:4  
Seven years have passed since one of us (W.N.) published the last comprehensive review on the mechanism of globular protein adsorption to solid/water interfaces. Since that time, annual contributions to the field have steadily increased and substantial progress has been made in a number of important areas. This review takes a fresh look at the driving force for protein adsorption by combining recent advances with key results from the past. The analysis indicates that four effects, namely structural rearrangements in the protein molecule, dehydration of (parts of) the sorbent surface, redistribution of charged groups in the interfacial layer, and protein surface polarity usually make the primary contributions to the overall adsorption behavior.  相似文献   

2.
Inhaled particles may land on the surface of the lung’s airspaces. Upon making contact with the airway wall, the processes of retention and clearance begin. Particle retention depends on many factors; among these are: (1) particle size, shape, solubility, surface chemistry and elastic properties of both the particles and the lung surface. (2) The anatomical location of the deposition site. (3) The structures with which the particle interacts at the site of deposition, including the surfactant film at the air–liquid interface, the aqueous phase, free cells like macrophages, lymphocytes and granulocytes, the epithelial cells and dendritic cells that reside at the basal side of the epithelium. Particles, after their deposition are wetted and displaced towards the epithelium by the surfactant film during the retention process. In vitro experiments have demonstrated that the extent of particle immersion depends on the surface tension of the surfactant film. The lower the surface tension, the greater is the immersion of the particles into the aqueous phase. Experimental results demonstrate consistently greater immersion of smaller particles into a liquid substrate covered with a surfactant film than that for larger particles. The exact mechanism, especially the initial wetting process, is not yet understood and requires further experiments. Line tension is a possible explanation for the dependence of particle displacement on particle size.  相似文献   

3.
In this topical review, we commemorate some of the outstanding contributions of Prof. Peter Kralchevsky in the field of colloid and interface science. In particular, we focus on his achievements on phenomena involving the attachment and detachment of colloidal particles to and from fluid interfaces, giving a personal perspective on how his work has inspired our own research and the activities of a thriving scientific community. We specifically concentrate our presentation on the issues of emulsion stability via particle adsorption and desorption, particle organization via capillary immersion forces and on the relevance of electrostatic barriers to spontaneous particle adsorption. This review takes the reader through numerous developments, from the early ‘90s to the present day, and reflects on the importance of the legacy of the work of Prof. Kralchevsky for the years to come.  相似文献   

4.
The stability criteria of liquid foams, stabilized by solid particles have been derived, based on the interfacial separating pressure, acting between two neighboring bubbles (foam cells). Different structures of solid particles in the cell walls have been considered, all being able to stabilize liquid foams with an increasing probability, according to the following row: structure LP1 (loosely packed single layer of particles) → structure CP1 (closely packed single layer of particles) → structure LP2C (loosely packed double layer of clustered particles) → structure LP2+C (loosely packed ‘double+’ layer of clustered particles) → structure CP2 (closely packed double layer of particles) → structure CP2+ (closely packed ‘double+’ layer of particles). It has been shown that the contact angle should be higher than a certain value Θo, in order to ensure stability of bubble–particles agglomerates. On the other hand, different structures of particles can stabilize the foam, if the contact angle is below the certain value (90° for the CP1 and LP1 structures, 129° for the CP2, LP2C and LP2+C structures and 180° for the CP2+ structure). The optimum value of the contact angle, being able to stabilize the foam is a difficult function of different parameters, but has been found in the interval between 50 and 90°. It has been shown that the possibility to stabilize liquid foams is connected with the value of the dimensionless quantity PRs/σ (P: the pressure, destabilizing the foam; Rs: the radius of the stabilizing particles; σ: the surface tension of the liquid). When PRs/σ>40, foam stabilization is absolutely impossible. When PRs/σ<40, foam stabilization becomes possible, but it has high probability only at PRs/σ<4. From this condition the maximum size of the particles, being able to stabilize liquid foams can be found. Trial calculations showed that particles smaller than 3 and 30 μm in diameter are requested for stabilizing water based, and liquid aluminum based foams, respectively.  相似文献   

5.
Silver particles have been deposited at externally polarised 1,2-dichloroethane (DCE)/water interfaces supported at the tip of micro- and nanopipettes. The electrochemical process involved the reduction of silver ion in the aqueous phase by an organic-phase electron donor (butylferrocene). The silver nucleation and growth process was investigated using potential step chronoamperometry, and the resulting current–time transients were analysed to extract nucleus numbers. At larger pipettes, with diameters of several micrometers, multi-particle nucleation was observed and optical microscopy provided direct evidence for metal electrodeposition at the liquid/liquid interface. For pipettes with radii of 0.5 μm or smaller, the current–time behaviour was consistent with single particle generation. Under some conditions, detachment of the particle from the liquid/liquid interface was inferred from the current–time characteristics, and it is suggested that controlled-detachment from micropipettes could provide a method for the deposition of small metal structures on surfaces.  相似文献   

6.
In this review we examine the influence of the line tension τ on droplets and particles at surfaces. The line tension influences the nucleation behavior and contact angle of liquid droplets at both liquid and solid surfaces and alters the attachment energetics of solid particles to liquid surfaces. Many factors, occurring over a wide range of length scales, contribute to the line tension. On atomic scales, atomic rearrangements and reorientations of submolecular components give rise to an atomic line tension contribution τatom (~1 nN), which depends on the similarity/dissimilarity of the droplet/particle surface composition compared with the surface upon which it resides. At nanometer length scales, an integration over the van der Waals interfacial potential gives rise to a mesoscale contribution |τvdW|  1–100 pN while, at millimeter length scales, the gravitational potential provides a gravitational contribution τgrav  +1–10 μN. τgrav is always positive, whereas, τvdW can have either sign. Near wetting, for very small contact angle droplets, a negative line tension may give rise to a contact line instability. We examine these and other issues in this review.  相似文献   

7.
A lattice-gas model is used to investigate the specific adsorption of ions at the interface between two immiscible electrolyte solutions. From Monte Carlo simulations, the profiles of particle densities and of the electrostatic potential are obtained. Specific adsorption is shown to affect the potential distribution markedly. In some cases an overshoot of the potential can be observed, an effect that is well known from specific adsorption at metal electrodes. This redistribution of charge and potential can increase the interfacial capacity, shift the potential of zero charge, and influence the rate of electron-transfer reactions.  相似文献   

8.
Alkane droplets on aqueous solutions of surfactants exhibit a first-order wetting transition as the concentration of surfactant is increased. The low-concentration or “partial wetting” state corresponds to an oil lens in equilibrium with a two-dimensional dilute gas of oil and surfactant molecules. The high-concentration or “pseudo-partial wetting” state consists of an oil lens in equilibrium with a mixed monolayer of surfactant and oil. Depending on the combination of surfactant and oil, these mixed monolayers undergo a thermal phase transition upon cooling, either to a frozen mixed monolayer or to an unusual bilayer structure in which the upper leaflet is a solid layer of pure alkane with hexagonal packing and upright chains while the lower leaflet remains a disordered liquid-like mixed monolayer. Additionally, certain long-chain alkanes exhibit a surface freezing transition at the air–oil interface where the top monolayer of oil freezes above its melting point. In this review, we summarize our previous studies and discuss how these wetting and surface freezing transitions influence the line tension of oil lenses from both an experimental and theoretical perspective.  相似文献   

9.
Structural characteristics of model monolayers of dilauroyl phosphatidylcholine (1,2‐dilauroyl‐sn‐glycerol‐3‐phosphatidylcholine [DLPC]) adsorbed at the water/vapors and water/octane interfaces were studied by means of computational chemistry methods. Coarse‐grained, followed by all‐atom molecular dynamics simulations were used to obtain the monolayers equilibrium structures at room temperature at both fluid interfaces. The analysis of the polar head orientation, polar region thickness, tail lengths, and NMR order parameter revealed that the different interface composition affects only the tail lengths and their orientation with respect to the interface. At the octane/water boundary the DLPC tails are less extended than the tails at the water/vacuum interface and are rather significantly tilted or multiply folded. Very similar structuring of the polar DLPC region at both studied boundaries was established. Dynamic 13C NMR chemical shift values, δ(13C) computed with density functional theory allowed to identify the interface effect on the DLPC molecular structure and the intramolecular motions in the adsorbed monolayer at the room temperature equilibrium. Detailed analysis of these dynamic δ(13C) values compared with available experimental data and static δ(13C) estimates of one DLPC low‐energy conformer are presented and discussed.  相似文献   

10.
Potential-modulation spectroelectrochemical methods at solid/liquid and liquid/liquid interfaces are reviewed. After a brief summary of the basic features and advantages of the methods, practical applications of potential-modulation spectroscopy are demonstrated using our recent studies of solid/liquid and liquid/liquid interfaces, including reflection measurements for a redox protein on a modified gold electrode and fluorescence measurements for various dyes at a polarized water/1,2-dichloroethane interface. For both interfaces, the use of linearly polarized incident light enabled an estimation of the molecular orientation. The use of a potential-modulated transmission-absorption measurement for an optically transparent electrode with immobilized metal nanoparticles is also described. The ability of potential-modulated fluorescence spectroscopy to clearly elucidate the charge transfer and adsorption mechanisms at liquid/liquid interfaces is highlighted.  相似文献   

11.
12.
The poly(2-vinylpyridine) layer was established at the Pyrex glass/water interface with periodic phases of adsorption/desorption runs observed over several days. This was evidenced by determining the concentration of radio-labelled molecules in the solution equilibrating the glass beads as a function of time (the effluent) while the same radio-labelled polymer was slowly supplied by injecting the polymer solution into the reactor containing the adsorbent at a controlled extremely slow rate. Although the adsorption (or the desorption) steps seemed to present some periodic character, they were better correlated with the successive bulk concentration thresholds that were established with time when the initial surface was free of polymer at time zero. Even when the adsorbent was coated at different degrees, desorption steps were correlated to the overstepping of decreasing concentration thresholds. Adsorption and desorption runs were attributed to the existence of different typical interfacial conformations of the adsorbed macromolecules that only can be stabilised in the adsorbed state when the layer was equilibrated with the polymer solution of a certain concentration. Macromolecule were definitely adsorbed when the reconformation process led to a flat conformation (trains). Macromolecules adsorbed with a conformation close to their solution conformation may be desorbed as a result of the reconformation process affecting previously adsorbed neighbour molecules (in the case of partially coated surfaces at time zero of injection). Macromolecules with loops and tails were retained on the surface when the polymer concentration in the bulk was progressively increased (for uncoated surfaces at time zero of injection). All these effect were attributed to the combined influence of topological effects on adsorption and reconformation of adsorbed macromolecules that characterise the non-equilibrium adsorption processes.  相似文献   

13.
14.
Adsorption of beta-2-microglobulin from aqueous solution onto unmodified and methylated silicon wafers and subsequent displacement of the small globular protein by fibrinogen were studied by spectroscopic ellipsometry, immunosorbent assays and atomic force microscopy. The results provide evidence that hydrophobicity of the substrate increases the maximum adsorbed amount of beta-2-microglobulin and the resistance of the adsorbed protein to displacement from the interface by competing species, respectively. Further, the dynamics of beta-2-microglobulin adsorption was found to induce significant differences in the degree of displacement achieved at given conditions. The observed variations in displacement behavior of adsorbed beta-2-microglobulin were interpreted based on information on the layer structure gained by atomic force microscopy. More compact and relatively smooth protein layers were formed on the hydrophobic surface corresponding to lower displacement by fibrinogen.  相似文献   

15.
We performed a series of experiments designed to elucidate the effects of the presence of sodium dodecyl sulfate (SDS) surfactant and an applied electrical field on the wetting behavior in a system containing a sessile droplet of phenylmethyl polysiloxane (PMPS) oil on a polished stainless steel surface submersed in aqueous solution. The voltage difference ranged from -3 to +3 V, which is at least 3 orders of magnitude smaller than from comparable recent work. We report the measured equilibrium contact angle of the droplet as a function of surfactant concentration and field strength. We then modeled the system. We solved the Laplace equation to obtain the 3D field within our system. We expanded the three surface tensions (oil droplet-aqueous solution (oa), oil droplet-metal surface (os), and aqueous solution-metal surface (as)) in a Taylor series with respect to surfactant concentration and local field strength. We use these three surface tensions in Young's equation to obtain the theoretical contact angle of the organic droplet. We demonstrate that the large changes in contact angle due to the simultaneous presence of small concentrations of surfactant and small voltage differences can be accounted for by changes in the oa and as surface tensions.  相似文献   

16.
Mössbauer spectra of liquid solutions fixed as submicroscopic (nanosize) droplets in solid carriers were taken at room temperature and 77 K. A porous silicate (“thirsty glass”) and microemulsions prepared with a paraffin/naphthalene mixture as dispersion medium served as carriers. Solutions of Mössbauer-active tin(IV) and iron(II) complexes were incorporated in these carriers as nanosize droplets. The Mössbauer effect was observed at temperatures above the freezing point of the solutions. For comparison, the systems were also studied in frozen state. Depending on the nature of the system (carrier-solute-solvent) the presence of three types of species was shown in the droplets on the basis of the Mössbauer parameters: (a) situated in bulk position with no interaction with the walls; (b) adsorbed on the internal surface of the holes in the carrier and (c) in bulk position, but with Mössbauer parameters reflecting the influence of the carrier. In some cases surface-bound and bulk species were present together in the sample. The appearance of the Mössbauer effect in liquid state reveals that the Mössbauer-active atoms are fixed in the nanosize pores by a network of hydrogen bonds which form between the solvent molecules, between solvent and solute molecules and between the solvent molecules and the walls of the pores in the carrier. The main parameters determining the rigidity of the network and the situation of the probe molecules are the hydrogen-bonding ability and the polarity of the components of the system. On the basis of the above observations, a new procedure was elaborated for the Mössbauer study of solutions fixed as nanosize droplets in rigid carriers. The analysis of the Mössbauer parameters gives a qualitative picture regarding the solution structure in the interior of the pores, and the adsorption and wetting properties of the system.  相似文献   

17.
Drop profile analysis tensiometry is applied to study the adsorption dynamics of phospholipids, proteins and phospholipid/protein mixtures at liquid/liquid interfaces. Measurements of the dynamic interfacial tension of phospholipid layers give information on the adsorption mechanism and the structure of the adsorption layer. The equilibrium and dynamic adsorption of pure protein solutions, i.e. human serum album (HSA), beta-lactoglobulin (beta-LG), beta-casein (beta-CA), can be explained well by the thermodynamic model of Frumkin and the diffusion-controlled adsorption theory. The adsorption behavior from mixed phospholipid/protein solutions was also investigated in terms of dynamic interfacial tensions. Interestingly, a "skin-like" folded film of pure protein or phospholipid/protein complex layers can be observed at curved surfaces at the water/oil interfaces. The addition of phospholipids accelerates the formation of the folded structure at the drop surface through co-adsorption of proteins.  相似文献   

18.
A goal across multiple scientific fields (e.g. separations, polymer processing, and biomaterials) is to understand polymer dynamics at solid/liquid interfaces. In the last two decades, rapid developments in single-molecule techniques have revolutionized our ability to directly observe molecular behaviors with ultra-high spatial/temporal resolution and to decouple the elementary processes that were often veiled in ensemble experiments. This review provided an overview of principle and realization of two single-molecule fluorescence techniques that were often used to study the interfacial dynamics. In addition, this review updated recent progress in the discovery and understanding of dynamical anomalies of polymers at solid/liquid interfaces using these single-molecule techniques, emphasizing important elementary processes of diffusion, adsorption, and desorption.  相似文献   

19.
We review the dynamics of particle laden interfaces, both particle monolayers and particle + surfactant monolayers. We also discuss the use of the Brownian motion of microparticles trapped at fluid interfaces for measuring the shear rheology of surfactant and polymer monolayers. We describe the basic concepts of interfacial rheology and the different experimental methods for measuring both dilational and shear surface complex moduli over a broad range of frequencies, with emphasis in the micro-rheology methods. In the case of particles trapped at interfaces the calculation of the diffusion coefficient from the Brownian trajectories of the particles is calculated as a function of particle surface concentration. We describe in detail the calculation in the case of subdiffusive particle dynamics. A comprehensive review of dilational and shear rheology of particle monolayers and particle + surfactant monolayers is presented. Finally the advantages and current open problems of the use of the Brownian motion of microparticles for calculating the shear complex modulus of monolayers are described in detail.  相似文献   

20.
Self-organization of cationic polymer particles through hydrophobic interaction on polymer films in aqueous system and characteristic properties of the resulting particle monolayers were investigated. Cationic polymer particles bearing quaternary ammonium groups on their surfaces effectively self-organized on polymer films. With an increase of the particle surface charge density, the surface coverage and average aggregate size (N a) decreased. The surface coverage control was accomplished by tuning the ionic strength of the media. The wettability of polymer films for water was imparted by the formation of particle monolayers on them. Annealing of the particle monolayers resulted in the increase of the adhesive strength, while the wettability for water was lost. Further improvements of both wettability and adhesive strength of particle monolayers were achieved by the immobilization of silica colloids on the particle monolayers. This method would be effective for the hydrophilization of polymer films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号