首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
使用单脉冲和再加热双脉冲激光对位于空气中的钢样进行烧蚀激发等离子体,对两种方式产生的光谱进行研究。再加热双脉冲激光诱导击穿光谱采用两束激光,一束烧蚀样品激发等离子体,另外一束激光对产生的等离子进行加热。通过对比发现:采用再加热双脉冲激发样品,增强了发射光谱的信号,增大了等离子体的连续光谱,提高了信号的稳定性,十次测量信号的相对标准偏差从5.0%降低到2.0%。另外,还对影响双脉冲信号增强程度的因素进行了分析,研究了光谱的增强程度随两脉冲间隔和采集延时的变化;激发上能级对光谱增强程度的影响,上能级越高增强程度越大。  相似文献   

2.
激光诱导击穿火焰等离子体光谱研究   总被引:1,自引:1,他引:1       下载免费PDF全文
采用PI-MAX-II型增强型电荷耦合器件, 用Nd:YAG纳秒脉冲激光器输出的1064 nm强光束击穿在一个大气压的空气中燃烧的酒精灯火焰, 对激光诱导击穿酒精灯火焰产生的等离子体光谱进行了初步研究. 根据美国国家标准与技术研究院原子发射谱线数据库, 对等离子体中的主要元素的特征谱线进行了标识和归属. 通过激光诱导击穿空气等离子体光谱、激光诱导击穿酒精灯火焰等离子体光谱、激光诱导酒精喷灯火焰等离子体光谱的对比分析, 发现不同燃烧状况下的光谱中各原子谱线的相对强度是不同的. 这些结果对于使用激光诱导击穿技术分析和研究碳氢燃料在空气中的燃烧特性具有重要的意义和参考价值, 同时也为将该技术应用于燃烧诊断提供了实验依据.  相似文献   

3.
利用具有时间分辨功能的ICCD相机对空气中激光诱导击穿合金钢产生的等离子体成像,同时采集了等离子体产生的发射光谱,针对焦距为100mm的聚焦透镜,研究了透镜到样品的距离(LTSD)对发射光谱强度、等离子体温度和等离子体形态的影响,并分析了产生影响的物理机制,对透镜到样品表面5个不同距离下等离子体光谱信号在样品表面垂直方向上的空间演变进行了分析。结果表明,透镜到样品的距离对等离子体的光谱信号、等离子体形态以及空间分布具有较大的影响。等离子体图像的像素强度与等离子体温度的变化规律基本一致,分别在透镜距离样品表面92mm和107mm处取得峰值,而92mm处对应最大值。对样品表面垂直方向上等离子体光谱信号的空间分布研究结果表明,不同聚焦位置下所产生的等离子体温度的空间分布不同,等离子体中不同谱线的光谱强度在空间的演变规律也有差别。  相似文献   

4.
应用纳秒脉冲激光烧蚀铝的动力学模型分析了激光诱导等离子体的演化过程。通过设置有无空腔的不同情况,研究和讨论了空间约束对等离子体和光谱信号的影响,并得到了等离子体演化过程中的电子温度和电子数密度。基于局域热平衡的假设,计算了铝在396.15 nm波长处的谱线强度。与无空腔条件下产生的等离子体相比,有空腔时等离子体的电子温度和电子数密度都明显提高。随着空腔宽度的增加,增强效果减弱,光谱信号强度先升后降,在空腔宽度为1.4 cm处获得最大值。建立了实验装置,实验结果与仿真结果吻合得较好,在同一宽度下得到了最大的信号强度值。模拟和实验结果提供了膨胀过程中等离子体空间和时间分布的数值信息,并解释了空腔存在对等离子体演化产生影响的机制。  相似文献   

5.
为深入认识空间约束增强的物理机理,采用二维可压缩流体模型,建立平板约束下激光诱导等离子体动力学行为的数值模拟模型,计算了平板约束下等离子体的演化过程,得到的一系列时间分辨的温度分布结果与实验结果基本一致.揭示了平板约束下,反射激波对等离子体的压缩作用导致等离子体温度升高的机理.对不同激光能量和不同约束板间距对等离子体温度增强效果和增强时刻的影响进行了研究,两板间距增加,增强时刻明显延迟,等离子体温度的增强效果削弱.  相似文献   

6.
采用长脉宽激光(500 μs)作为激发光源,研究了长脉宽激光在低能量密度条件下诱导击穿土壤等离子体的光谱特性。实验发现,在长脉宽激光的激发下等离子体光谱特性与纳秒及超短脉宽激光相比存在较大的差异,在402~409 nm波段和420~436 nm波段,土壤等离子体光谱均没有出现强烈的连续背景辐射阶段,所激发产生的等离子体发光寿命可持续220~270 μs。特征谱线PbⅠ405.78 nm和CrⅠ425.43 nm分别在210和190 μs时出现,且谱线强度均随时间延长而逐渐增加,分别在延时320和350 μs时达到最大值。研究结果表明,采用长脉宽激光作为激发光源,增加了激光与物质相互作用的时间,有助于激发形成发光时间较长的“准稳态等离子体”;应用内标法建立了Pb和Cr元素校准曲线,8次重复实验得到分析线与内标线净信号强度比值的相对标准偏差为2.21~6.35%,长脉宽激光激发产生的等离子体发光稳定;计算得到土壤中Pb和Cr元素的检测限分别为34.7和40.0 mg·kg-1,达到国家土壤环境质量标准规定的一级含量要求;长脉宽激光激发产生等离子体的电子温度为6 612 K,电子密度为3.7×1017 cm-3,达到了局部热平衡状态。  相似文献   

7.
利用Nd:YAG脉冲激光器作为光源,在实验室自然大气环境下诱导产生国家标准土壤的激光等离子体,选取砷的228.8 nm特征谱线作为分析线,测量并分析了砷元素的激光诱导击穿光谱特性。在相同含量和积分时间条件下,调节延迟时间,获取了砷元素的时间演化特性。确定砷元素的最佳延迟时间为1 s,积分时间为2 s。测定不同含量下,砷的特征谱线强度,给出砷元素的定标曲线,并计算得到砷元素的检测限为45 mg/kg。  相似文献   

8.
利用1064 nm调Q Nd:YAG激光诱导产生壹圆硬币等离子体,为了提高等离子体特征参数的求解精度,利用改进型迭代Boltzmann算法,建立镍原子谱线(225.47 nm、303.19 nm、304.50 nm、323.30 nm、339.29 nm、491.84 nm、495.32 nm、500.03 nm、501.76 nm)的Boltzmann图,计算得到硬币等离子体电子温度为28144 K.通过测量镍原子谱线341.48 nm的Stark展宽,得到硬币等离子体的电子数密度为8.6×1017cm-3.基于实验结果,证明激光诱导硬币等离子体满足局部热力学平衡模型.  相似文献   

9.
湿度对激光诱导土壤等离子体特性的影响   总被引:1,自引:0,他引:1  
为研究土壤湿度对激光等离子体的影响,通过制备六种不同湿度的土壤样品进行实验,选取铅的特征谱线(Pb:405.78nm)为分析线。实验结果表明,随着土壤湿度的增加,谱线的强度、信噪比及RSD线性减小。在局部热力学平衡近似下,选取铁在400~440nm波长范围内的四条特征谱线,利用玻尔兹曼图,测定了等离子体温度在不同湿度下的变化特性,随着湿度从零增加到20%,等离子体温度从11800K近似单调的下降到7800K,电子密度从3.3×106cm-3减小到2.8×106cm-3。  相似文献   

10.
纳秒脉冲激光诱导土壤等离子体辐射强度研究   总被引:1,自引:0,他引:1  
为了改善激光诱导击穿光谱质量,采用Nd∶YAG激光器输出的纳秒脉冲激光激发土壤样品,由光栅光谱仪和光电检测系统记录激光诱导等离子体发射光谱,研究了激光输出能量(100~500mJ)对等离子体辐射强度的影响。实验结果表明,在激光能量为200mJ的优化条件下,可以提高光谱强度和信背比。当激光束被适当散焦以后激发样品时,能够进一步改善光谱质量,散焦位置为+6mm时元素Mg,Al,K和Fe的谱线强度比未散焦时分别提高了46%,63%,59%和45%,而光谱信背比分别提高了11%,31%,35%和38%。这为检测土壤样品中痕量杂质元素奠定了基础。  相似文献   

11.
为了研究样品温度对激光诱导击穿Cu等离子体特征参数的影响,以黄铜为研究对象,在优化的实验条件下采用波长为532 nm的Nd∶YAG纳秒脉冲激光诱导激发不同温度下的块状黄铜,测量了Cu等离子体的特征谱线强度和信噪比;同时在局部热平衡条件下利用Boltzmann斜线法和Stark展宽法分析计算了不同的样品温度条件下等离子体电子温度和电子密度。实验结果表明,在激光功率为60 mW时,随着样品温度的升高,Cu的特征谱线强度和信噪比逐渐增加,样品温度为130 ℃时达到最大值,然后趋于饱和。计算表明,黄铜样品中Cu元素Cu Ⅰ 329.05 nm,Cu Ⅰ 427.51 nm,Cu Ⅰ 458.71 nm,Cu Ⅰ 510.55 nm,Cu Ⅰ 515.32 nm,Cu Ⅰ 521.82 nm, Cu Ⅰ 529.25 nm,Cu Ⅰ 578.21 nm八条谱线在130℃的相对强度相较于室温(18 ℃)下分别提高了11.55倍、4.53倍、4.72倍,3.31倍、4.47倍、4.60倍、4.25倍、4.55倍,光谱信噪比分别增大了1.35倍,2.29倍、1.76倍、2.50倍、2.45倍、2.28倍、2.50倍,2.53倍。分析认为,升高样品温度会增大样品的烧蚀质量,相对于温度较低状态增加了等离子体中样品粒子浓度,进而提高等离子体发射光谱强度。所以,适当升高样品温度能够提高谱线强度和信噪比,从而增强LIBS技术检测分析光谱微弱信号的测量精度,改善痕量元素的检测灵敏度。同时研究了改变样品温度时等离子体电子温度和电子密度的变化趋势。计算表明,当样品温度从室温上升到130 ℃的过程中,等离子体的电子温度由4 723 K上升到7 121 K时基本不再变化。这种变化规律与发射谱线强度和信噪比变化趋势一致。分析认为,这主要是由于在升高样品温度的初始阶段,激光烧蚀量增大,等离子体内能增大,从而导致等离子体电子温度升高。当激光烧蚀样品的量达到一定值后不再变化,激光能量被激发溅射出来的样品蒸发物以及尘粒的吸收、散射和反射,导致激光能量密度降低,电子温度趋于饱和,达到某种动态平衡。选用一条Cu原子谱线(324.75 nm)的Stark展宽系数计算激光等离子体的电子密度,同时研究改变样品温度时等离子电子密度的变化趋势,计算表明在样品温度为130 ℃时,Cu Ⅰ 324.75 nm对应的等离子电子密度相较于室温(18 ℃)条件下增大了1.74×1017 cm-3。该变化趋势与电子温度的变化趋势一致。适当升高样品温度使得电子密度增大,从而提高电子和原子的碰撞几率,激发更多的原子,这是增强光谱谱线强度的原因之一。由此可见,升高样品温度是一种便捷的提高LIBS检测灵敏度的有效手段。  相似文献   

12.
应用激光诱导击穿光谱检测污水溶液中的砷   总被引:4,自引:0,他引:4  
工业冶炼过程中产生的废水中含有As等重金属元素,对环境造成污染并对人类身体健康形成危害,有必要对其进行实时、在线的监测。激光诱导击穿光谱(LIBS)是一种新型的元素测量技术,具有快速检测等优点。文章作者搭建了一套激光诱导击穿光谱实验装置,采用Nd∶YAG激光器产生的脉冲激光击穿样品产生等离子体,其发射的光谱被中阶梯光栅光谱仪分光,并用ICCD进行光电探测。对从现场采集的含砷工业废水开展了LIBS探测实验,并定性分析出了As元素的特征谱线。根据一系列含As浓度不同的污水样品的LIBS实验结果,获得元素浓度与谱线强度的关系曲线(定标曲线)。采用定标曲线可以对未知含As浓度的工业废水进行定量分析。结果表明,采用LIBS方法能够实现对污水溶液中的As元素的快速检测,具有广泛的应用前景。  相似文献   

13.
样品温度对激光诱导土壤等离子体辐射特性的影响   总被引:1,自引:0,他引:1  
为了研究样品温度对激光诱导等离子体辐射特性的影响,以国家标准土壤样品为靶,在空气中利用波长为1 064nm的Nd∶YAG纳秒脉冲激光烧蚀不同温度(≤350℃)下的片状样品,测量了激光诱导等离子体的发射光谱强度和信噪比,计算了光谱分析检出限和信号的测量准确度.实验结果表明,当能量为200mJ时,随着样品温度的升高,等离子体辐射逐渐增强,并且在样品温度为300℃时达到最大值.计算表明,元素Al、Mg、Ba和Fe在300℃样品温度时的光谱线强度比室温条件下分别提高了67%、58%、61%和52%,信噪比分别增大了41%、51%、28%和38%,且元素分析检出限和光谱信号稳定性均有改善.升高样品温度有利于改善激光光谱的质量.  相似文献   

14.
激光诱导击穿光谱技术(LIBS)是一种广泛应用于科学和工程方面的元素分析技术。LIBS测量一些微量元素时存在探测极限高的不足,因此增强LIBS信号强度,降低元素探测极限,对扩展其应用范围有着重要的意义。为了实现LIBS光谱信号的增强,提出多次放电增强激光诱导击穿光谱方法,并以固体铝合金材料为例进行了光谱信号强度增强的研究。实验发现,激光作用在铝合金材料上烧蚀样品产生等离子体并溅射到样品上方高压放电电极所在区域,该区域在等离子体产生之后50 μs之内均可以诱导高压电极放电。因此采用高频脉冲电源可以实现一次LIBS产生的等离子体诱导电极多次放电。多次放电会对等离子体进行多次激发,同时多次放电对等离子的加热作用会延缓等离子体冷却速率从而延长等离子体的持续时间,两者共同作用可以增强LIBS光谱信号强度,进而降低LIBS对微量元素的探测极限。使用频率为100 kHz的高频直流脉冲电源,利用数字延迟脉冲发生器同步激光与高压电源,在激光过后3.6 μs触发高压放电,一次LIBS产生的等离子体可以诱导电极5次放电,即对等离子体进行5次激发和加热。利用光谱仪对5次放电等离子体光谱进行积分测量。实验结果表明:使用多次放电增强之后,等离子体持续时间得到大幅延长,光谱信号强度得到大幅增强,其中,Mg Ⅱ (~279 nm)的信号强度可以增强约48倍,Al Ⅱ (~358 nm)的信号强度可以增强约72倍,微量元素Mn Ⅰ (~403 nm)的信号强度增强约6.3倍,微量元素Cu Ⅰ (~403 nm) 的信号强度增强约8.3倍。Mn Ⅰ (~403 nm)和Cu Ⅰ (~403 nm) 的探测极限分别降低为LIBS单次放电的1/6和1/8。多次放电增强激光诱导击穿光谱方法很好地增强了LIBS的光谱信号强度,降低了对微量元素的探测极限,扩展了LIBS技术的应用范围。该方法有潜力应用到贵重物品、稀有材料及文物的鉴定之中。  相似文献   

15.
内标法是激光诱导击穿光谱(LIBS)最常用的定量分析方法之一。为了提高定量分析精度,研究了谱线强度比的相对波动特性随分析线和内标线之间激发能级差(ΔE)和波长差(Δλ)变化的规律。在局部热力学平衡条件下,建立了考虑等离子体中某元素电子上能级跃迁到下能级产生原子发射谱线的激发能级差、等离子体温度、配分函数和离子密度等强度影响因素的数学模型,对模型中激发能级差对谱线强度相对波动的影响进行了研究。得到在-2 eV<ΔE<2 eV和等离子体温度范围在3 000~15 000 K条件下,谱线强度随着ΔET变化的趋势:随着ΔE变大,谱线强度比呈上升,在ΔE=2 eV,T=3 000 K时谱线强度比最大;并且谱线强度比相对波动对ΔET敏感,ΔE趋近于零时相对波动变小,T对谱线强度比相对波动影响变化不大,整体趋势平稳。在T=10 000 K时,ΔE<0相对波动比ΔE>0时小,因此理论上优先选择ΔE<0的谱线对。通过理论分析得出|ΔE|越接近于零,谱线强度比相对波动越小。实验装置中采用工作波长1 064 nm,脉冲能量85 mJ,重复频率1 Hz,脉冲宽度13 ns的Nd∶YAG脉冲激光诱导击穿样品;采用工作波长200~975 nm,光学分辨率优于0.05 nm的Andor公司Mechelle 5000光谱仪,配合Andor New iStar型号ICCD采集光谱;利用激光诱导铁基合金等离子体光谱进行验证。实验中,以Fe为内标元素,Cr和Mn为分析元素。筛选NIST谱线库中跃迁概率在106以上的谱线,并优先选择共振线能级差相近的非共振线进行对比分析。结果表明,选择激发能级相近或波长相近的谱线作为分析谱线的原则有一定的局限性。对于Cr和Fe,|ΔE|在0.14和1.51 eV时得到的谱线强度相对标准偏差(RSD)分别为6.7%和4.6%,其谱线强度比理论值和实际值之差分别为1.14和0.59;|Δλ|在11.7和50.8 nm时得到的RSD分别为6.3%和4.4%,其谱线强度比理论值和实际值之差分别为1.69和0.62。分析表明,相比于波长差,激发能级差对Cr/Mn相对波动影响较大。分析元素Cr/Mn与内标元素Fe波长差绝对值不断增大,RSD反而不断减小;在1.50 eV和90 nm较大约束范围内,|ΔE|大的谱线得到的谱线强度比相对波动相对较小,Cr和Fe的RSD最大相差为2.06%;|Δλ|大的谱线得到的谱线强度比相对波动相对较小,Cr和Fe的RSD最大相差为1.35%。由以上实验结果得出,在实际选择分析谱线时,尽量选择激发能级和波长相近的谱线原则有一定的局限性。|ΔE|或|Δλ|大的谱线得到的RSD较小,选择谱线强度比理论值和实际值最接近的谱线可以作为谱线选择依据。另外,选择谱线强度比理论值和实际值最接近的谱线,可以降低谱线强度比相对波动。  相似文献   

16.
激光波长和激光入射角是影响激光诱导等离子体空间分布和光谱强度空间分布特性的重要因素.基于流体动力学和SAHA方程,仿真了激光诱导等离子体的二维空间演化过程,研究了激发等离子体的辐射光谱空间分布特性及激光波长、入射角度等参数对等离子体特征谱线空间分布特性的影响.研究结果表明:波长为1064 nm的激光在不同延时条件下,最佳激光入射角度均为0°.当入射角度为0°时,所激发的等离子体辐射在不同的探测角度处均有较强的光谱信号,且在100,500,1000 ns延时条件下,最佳探测角分别为±41°、±11°和±12°.对于不同的波长,当延时分别为100 ns和500 ns且激光以0°入射时,长波长激光所激发的等离子体光谱在不同探测角处的强度均强于短波长激光.当延时为100 ns时,1064 nm波长激光所激发的光谱在最佳探测角位置的强度约为532 nm和266 nm波长激光所激发的光谱在各自最佳探测角位置强度的2倍.随着探测角绝对值的减小,等离子体辐射光谱强度先增大,到达最佳探测角后强度再减小.入射波长分别为532 nm和1064 nm的激光诱导击穿光谱实验结果验证了仿真结果.  相似文献   

17.
建立了适用于激光诱导击穿光谱探测的多元线性回归、神经网络回归和支持向量机回归三种定量反演算法模型, 以水体重金属Ni为例进行了回归实验测试和对比分析. 多元线性回归、神经网络回归和支持向量机回归的平均相对标准偏差分别为7.60%, 4.86%, 2.35%; 最大相对标准偏差分别为23.35%, 15.20%, 8.29%; 平均相对误差分别为25.98%, 10.58%, 2.72%, 最大相对误差分别为116.47%, 47.38%, 9.89%. 研究为进一步实现水中痕量金属元素的快速定量分析提供了方法和数据参考. 关键词: 光谱学 激光诱导击穿光谱 支持向量机回归 重金属  相似文献   

18.
刘玉峰  丁艳军  彭志敏  黄宇  杜艳君 《物理学报》2014,63(20):205205-205205
空气等离子体的时间行为对空气环境下激光诱导等离子体形成过程的研究有重要意义.本文将纳秒Nd:YAG脉冲激光(1064 nm)聚焦于一个大气压的空气中,诱导其产生等离子体.利用具有纳秒时间分辨功能的PI-MAX-II型ICCD,采用时间分辨光谱方法,研究了大气环境下激光诱导等离子体的时间行为.大气环境下的激光诱导等离子体光谱广泛分布于300—900 nm范围内,并且是由带状光谱和线状光谱叠加而成的.根据美国国家标准与技术研究院原子发射谱线数据库,对等离子体光谱中的氧、氮、氢等元素的特征谱线进行了识别和归属.给出了激光诱导击穿大气等离子体光谱随时间演化的直观图像,根据空气等离子体发射谱线计算了等离子体电子温度和等离子体电子密度.这些结果对于提高在大气环境下进行的在线测量结果的准确性和精确性具有重要的科学意义.  相似文献   

19.
激光诱导击穿光谱技术(LIBS)具有无需样品制备,原位快速分析,可进行实时控制的特点使其在钢铁冶炼控制中具有巨大的实际应用价值。本文以波长为1 064 nm的Nd∶YAG调Q固体激光器为激发光源,CCD为探测器,高合金钢GBW01605—01609系列为样品,在建立的LIBS实验装置上研究激光与合金钢之间的相互作用。系统地研究了观测距离、激光能量对高合金钢样品中激光诱导击穿谱特性的影响,并分析了LIBS信号的时间分辨特性,确定了将LIBS用于合金钢微量元素定量分析时的最佳实验条件。  相似文献   

20.
为获得共线双脉冲激发方式对土壤中Pb和Ba元素的谱线增强效果,研究了1064 nm单脉冲和(355 nm+ 1064 nm),(1064 nm+355 nm)共线双脉冲三种激发方式下,谱线强度随采集延迟时间的变化规律和谱线增强倍数随双脉冲时间间隔的变化规律。研究发现,与单脉冲激发方式相比,在双脉冲激发方式下,谱线Pb I 405.78 nm和Ba I 553.55 nm强度的最大增强倍数分别为5和8。该研究结果为检测土壤中重金属元素提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号