首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The potential of the interaction of an alkali metal with a planar metal surface was calculated by solving a two-dimensional Schrödinger equation. The potential energy of the valence electron of the atom was derived from a model pseudopotential based on the image potential. It was demonstrated that the potential energy curve for the interaction of an alkali metal atom with the surface of a heavier alkali metal has a minimum at a certain distance from the surface, a feature that gives rise to equilibrium states of levitating atoms.  相似文献   

2.
We report a theoretical investigation of the adsorption of alkali metal atoms deposited on ultrathin oxide films. The properties of Li, Na, and K atoms adsorbed on SiO(2)/Mo(112) and of K on MgO / Ag(100) and TiO(2)/Pt(111) have been analyzed with particular attention to the induced changes in the work function of the system, Phi. On the nonreducible SiO(2) and MgO oxide films there is a net transfer of the outer ns electron of the alkali atom to the metal substrate conduction band; the resulting surface dipole substantially lowers Phi. The change in Phi depends (a) on the adsorption site (above the oxide film or at the interface) and (b) on the alkali metal coverage. Deposition of K on reducible TiO(2) oxide films results in adsorbed K(+) ions and in the formation of Ti(3+) ions. No charge transfer to the metal substrate is observed but also in this case the surface dipole resulting from the K-TiO(2) charge transfer has the effect to considerably reduce the work function of the system.  相似文献   

3.
The size-specific influence of alkali metal ions in the gradual transition from cluster rearrangement to solvation dynamics is investigated by means of molecular dynamics simulations for alkali metal cation-hexafluorobenzene systems, M(+)-C(6)F(6) (M = Na, K, Rb and Cs), surrounded by Ar atoms. To analyze such transition, different small aggregates of the M(+)-C(6)F(6)-Ar(n) (n = 1, ..., 30) type and M(+)-C(6)F(6) clusters solvated by about 500 Ar atoms are considered. The Ar-C(6)F(6) interaction contribution has been described using two different formalisms, based on the interaction decomposition in atom-bond and in atom-effective atom terms, which have been applied to study the small aggregates and to investigate the Ar solvated M(+)-C(6)F(6) clusters, respectively. The selectivity of the promoted phenomena from the M(+) ion size and their dependence from the number of Ar atoms is characterized.  相似文献   

4.
Ion hydration at a solid surface ubiquitously exists in nature and plays important roles in many natural processes and technological applications. Aiming at obtaining a microscopic insight into the formation of such systems and interactions therein, we have investigated the hydration of alkali metal ions at a prototype surface-graphite (0001), using first-principles molecular dynamics simulations. At low water coverage, the alkali metal ions form two-dimensional hydration shells accommodating at most four (Li, Na) and three (K, Rb, Cs) waters in the first shell. These two-dimensional shells generally evolve into three-dimensional structures at higher water coverage, due to the competition between hydration and ion-surface interactions. Exceptionally K was found to reside at the graphite-water interface for water coverages up to bulk water limit, where it forms an "umbrellalike" surface hydration shell with an average water-ion-surface angle of 115 degrees . Interactions between the hydrated K and Na ions at the interface have also been studied. Water molecules seem to mediate an effective ion-ion interaction, which favors the aggregation of Na ions but prevents nucleation of K. These results agree with experimental observations in electron energy loss spectroscopy, desorption spectroscopy, and work function measurement. In addition, the sensitive dependence of charge transfer on dynamical structure evolution during the hydration process, implies the necessity to describe surface ion hydration from electronic structure calculations.  相似文献   

5.
The dynamics of the metal atom in the recently isolated tricoordinate tin complex tris(2,4,6-triisopropylphenyl)stannylium tetrakis(pentafluorophenyl)borate was examined by temperature-dependent (119)Sn M?ssbauer spectroscopy over the temperature range 90 K < T < 170 K. Contrary to expectation, the metal atom motion in this temperature range is isotropic within experimental error of the M?ssbauer data, and is only moderately anisotropic, even at 293 K, as evidenced by single crystal X-ray diffraction data. The hyperfine parameters at 90 K are completely consistent with trigonal coordination involving sp(2) hybridization of the 5s5p bonding orbitals of tin.  相似文献   

6.
7.
Temperature-dependent (57)Fe M?ssbauer effect spectroscopy has been used to elucidate the metal atom dynamics in three neutral and two cationic bucky ferrocenes. For the three diamagnetic complexes Fe(C(60)H(5))Cp (1), Fe(C(60)Me(5))Cp (2), and Fe(C(60)Ph(5))Cp (3), the metal atom motion is anisotropic and the temperature dependence of the mean-square amplitude of vibration of the metal atom at a number of temperatures is reported. The M?ssbauer lattice temperatures have been determined and compared to the parent ferrocene (6). The synthesis and X-ray crystal structure of 3 have been determined at 153(2) K, and the (1)H and (13)C NMR spectra have been recorded. The cationic complexes derived from 2 and 3 show spin-lattice relaxation. The relaxation rate appears insensitive to the nearest-neighbor environment of the metal atom in this pair.  相似文献   

8.
采用原子叠加和电子离域分子轨道处理(ASEO-MO)对碱金属原子在C~60分子内外所形成的MC~60进行了较详细的考察, 讨论了它们的几何结构规律和电子结构等性质。在MC~60(M=Li, Na, K, Rb, Cs)中Li原子的平衡位置将偏离C~60分子的中心, 而Na和K的平衡位置是在C~60分子的中心, 但Rb和Cs原子则在C~60分子外部将比在其内部稳定。由金属原子半径和C~60球半径的讨论, 从而预见哪些原子可以在C~60分子内部附加形成稳定的化合物。  相似文献   

9.
The adsorptions of K and Cs on Pd(111) were studied by the density functional calculations within the generalized gradient approximation. The site preference, bonding character, work function, and electron structure of the system were analyzed. For K and Cs adsorption, the hcp hollow site was found to be preferred for all the coverages investigated. The calculated adsorption geometries for (2 x 2) and (square root 3 x square root 3)R30 degrees phases are both in reasonable agreement with the observed results. The decrease of the work function upon the adsorption of K and Cs can be attributed to a dipole moment associated with the polarized adsorbate atom, which is characterized by depletion of the electron charge in the alkali metal layer and a charge accumulation in the interface region. Our results indicate that the bonding of alkali metal with the Pd(111) surface has a mixed ionic and metallic bond character at low coverage and a metallic bond of covalent character at high coverage.  相似文献   

10.
The method for calculations the embedded atom potential for liquid metals based on the diffraction data on the structure close to the melting temperature was applied to potassium. The embedded atom potential parameters were adjusted using the data on the structure of potassium at 343, 473, and 723 K and the thermodynamic properties of potassium at temperatures up to 37240 K. The use of the molecular dynamics method and the embedded atom potential gave close agreement with the experimental data on the structure, density, and potential energy of liquid metal along the p ? 0 isobar at temperatures up to 2200 K and along the shock adiabat up to a pressure of ~85 GPa and 37240 K. The calculated bulk compression modulus at 343 K was close to its actual value, and the self-diffusion coefficients increased under isobaric heating conditions following a power law with an exponent of 1.6478. The melting temperature of body-centered potassium with the embedded atom potential was (319 ± 1) K, which was close to the actual melting temperature. The potential obtained incorrectly described crystalline potassium.  相似文献   

11.
Substitution effect, absorption, and fluorescence behaviors of some benzoaza-15-crown-5 derivatives upon cation complexation in solvent extraction were studied. The introduction of a substituent on the nitrogen atom in benzoaza-15-crown-5 enhanced extractabilities in the solvent extraction of aqueous alkali metal picrates. The nondonating substituents raised the cation selectivity for Na(+) over K(+), but the donating substituents reduced the cation selectivity. The absorption and fluorescence spectral behavior was different with the alkali metal cations.  相似文献   

12.
Molecular dynamics simulations employing a reactive many-body potential of the keV particle bombardment of small hydrocarbon molecules adsorbed on a metal surface have been performed. The simulations predict the occurrence of considerable lateral motion of particles in the region right above the surface. For adsorbates such as CHx, dominant ejected species are an H atom or the intact adsorbate as there are only two unique bonds to sever. Molecules that extend further above the surfaces are exposed to more collisions from laterally moving particles and consequently there is more fragmentation and the dominant ejected species is usually not the original adsorbate.  相似文献   

13.
Molecular dynamics (MD) simulations employing embedded atom method potentials and ultrahigh vacuum (UHV) experiments were carried out to study the mixing process between the Ni and Pt atoms in the Ni/Pt(111) bimetallic system. The barrier for a Ni atom to diffuse from the top surface to the subsurface layer is rather high (around 1.7 eV) as calculated using the nudged elastic band (NEB) method. Analysis of the relaxation dynamics of the Ni atoms showed that they undergo diffusive motion through a mechanism of correlated hops. At 600 K, all Ni atoms remain trapped on the top surface due to large diffusion barriers. At 900 K, the majority of Ni atoms diffuse to the second layer and at 1200 K diffusion to the bulk is observed. We also find that smaller Ni coverages and the presence of Pt steps facilitate the Ni-Pt mixing. By simulated annealing simulations, we found that in the mixed state, the Ni fraction oscillates between layers, with the second layer being Ni-richer at equilibrium. The simulation results at multiple time scales are consistent with the experimental data.  相似文献   

14.
We report a systematic investigation of the electronic structure of chemisorbed alkali atoms (Li-Cs) on a Ag(111) surface by two-photon photoemission spectroscopy. Angle-resolved two-photon photoemission spectra are obtained for 0-0.1 monolayer coverage of alkali atoms. The interfacial electronic structure as a function of periodic properties and the coverage of alkali atoms is observed and interpreted assuming ionic adsorbate/substrate interaction. The energy of the alkali atom σ-resonance at the limit of zero coverage is primarily determined by the image charge interaction, whereas at finite alkali atom coverages, it follows the formation of a dipolar surface field. The coverage- and angle-dependent two-photon photoemission spectra provide information on the photoinduced charge-transfer excitation of adsorbates on metal surfaces. This work complements the previous work on alkali/Cu(111) chemisorption [Phys. Rev. B 2008, 78, 085419].  相似文献   

15.
在加压固定床反应器中研究了碱金属K对褐煤加氢气化的催化作用,考察了温度、压力和催化剂添加量对褐煤加氢气化反应性能的影响。结果表明,碱金属K对褐煤加氢气化具有良好的催化效果,气化反应的碳转化率约为95%,产品气中甲烷的质量分数可达89%;升高温度、提高压力和增加催化剂添加量均能明显提高气化反应性能,催化剂的饱和添加量约为15%。利用扫描电子显微镜(SEM)和气体吸附/脱附分析,对不同催化剂添加量煤样的表面形态和孔结构进行分析,发现比表面积和孔容积随K添加量的增加先减少后增大。  相似文献   

16.
Gas-phase hydrogen atoms are accelerated towards metallic surfaces in their vicinity. As it approaches the surface, the velocity of an atom increases and this motion excites the metallic electrons, causing energy loss to the atom. This dissipative dynamics is frequently described as atomic motion under friction, where the friction coefficient is obtained from ab initio calculations assuming a weak interaction and slow atom. This paper tests the aforementioned approach by comparing to a real-time Ehrenfest molecular dynamics simulation of such a process. The electrons are treated realistically using standard approximations to time-dependent density functional theory. We find indeed that the electronic excitations produce a friction-like force on the atom. However, the friction coefficient strongly depends on the direction of the motion of the atom: it is large when the atom is moving towards the cluster and much smaller when the atom is moving away. It is concluded that a revision of the model for energy dissipation at metallic surfaces, at least for clusters, may be necessary.  相似文献   

17.
The method for calculating the embedded atom potential for liquid metals from the diffraction structural data close to the melting point was applied to lead at temperatures from 613 to 20000 K. The embedded atom potential parameters were adjusted using the data on the lead structure at 613–1173 K, the thermodynamic properties of lead over the temperature range 613–2000 K, and the results of shock wave experiments. The embedded atom potential and molecular dynamics method allowed the structural characteristics of the liquid metal to be successfully predicted up to 1173 K. The calculated bulk compression modulus at 613 K was close to its actual value. The self-diffusion coefficients along the liquid-vapor equilibrium line increased as the temperature rose following the power law with the exponent close to 2.03. The properties of lead under extremal conditions were calculated up to the temperature 20000 K and density 20.721 g/cm3. At 1000 K and a density of 18.156 g/cm3, close agreement with the experimental pressure (101.5 GPa) was obtained. The potential found fairly well described the properties of crystalline lead. At the same time, the embedded atom potential adjusted to describe the properties of the crystalline phase only poorly described the properties of liquid lead at increased densities.  相似文献   

18.
Direct molecular orbital-molecular dynamics (MO-MD) calculation was applied to diffusion processes of the Li atom on a model surface of amorphous carbon and compared with the diffusion mechanism of Li+ ion. A carbon sheet composed of C96H24 was used as the model surface. The total energy and energy gradient on the full dimensional potential energy surface of the LiC96H24 system were calculated at each time step in the trajectory calculation. The optimized structure, where the Li atom is located at the center of mass of the model surface, was used as the initial structure at time zero. Simulation temperatures were chosen in the range of 200-1250 K. The dynamics calculations showed that the Li atom vibrates around the initial position below 250 K, and it moves above 300 K. At middle temperature, the Li atom translates freely on the surface. At higher temperature (1000 K), the Li atom moves from the center to edge region of the model surface and is trapped in the edge. The activation energy calculated for the Li atom is larger than that for the Li+ ion. This difference is due to the fact that the Li atom diffuses together with an unpaired electron on the carbon surface. The diffusion mechanism of the Li atom was discussed on the basis of the theoretical results.  相似文献   

19.
The alkali metal‐nickel carbonyl anions ENi(CO)3? with E=Li, Na, K, Rb, Cs have been produced and characterized by mass‐selected infrared photodissociation spectroscopy in the gas phase. The molecules are the first examples of 18‐electron transition metal complexes with alkali atoms as covalently bonded ligands. The calculated equilibrium structures possess C3v geometry, where the alkali atom is located above a nearly planar Ni(CO)3? fragment. The analysis of the electronic structure reveals a peculiar bonding situation where the alkali atom is covalently bonded not only to Ni but also to the carbon atoms.  相似文献   

20.
The hydrogen storage system LiH + NH(3) ? LiNH(2) + H(2) is one of the most promising hydrogen storage systems, where the reaction yield can be increased by replacing Li in LiH with other alkali metals (Na or K) in order of Li < Na < K. In this paper, we have studied the alkali metal M (M = Li, Na, K) dependence of the reactivity of MH with NH(3) by calculating the potential barrier of the H(2) desorption process from the reaction of an M(2)H(2) cluster with an NH(3) molecule based on the ab initio structure optimization method. We have shown that the height of the potential barrier becomes lower in order of Li, Na, and K, where the difference of the potential barrier in Li and Na is relatively smaller than that in Na and K, and this tendency is consistent with the recent experimental results. We have also shown that the H-H distance of the H(2) dimer at the transition state takes larger distance and the change of the potential energy around the transition state becomes softer in order of Li, Na, and K. There are almost no M dependence in the charge of the H atom in NH(3) before the reaction, while that of the H atom in M(2)H(2) takes larger negative value in order of Li, Na, and K. We have also performed molecular dynamics simulations on the M(2)H(2)-NH(3) system and succeeded to reproduce the H(2) desorption from the reaction of Na(2)H(2) with NH(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号