首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnetohydrodynamic (MHD) effects on the translation and rotation of a charged colloidal sphere situated at the center of a spherical cavity filled with an arbitrary electrolyte solution when a constant magnetic field is imposed are analyzed at the quasisteady state. The electric double layers adjacent to the solid surfaces may have an arbitrary thickness relative to the particle and cavity radii. Through the use of a perturbation method to the leading order, the Stokes equations modified with the electric∕Lorentz force term are dealt by using a generalized reciprocal theorem. Using the equilibrium double-layer potential distribution in the fluid phase from solving the linearized Poisson-Boltzmann equation, we obtain explicit formulas for the translational and angular velocities of the colloidal sphere produced by the MHD effects valid for all values of the particle-to-cavity size ratio. For the limiting case of an infinitely large cavity with an uncharged wall, our result reduces to the relevant solution for an unbounded spherical particle available in the literature. The boundary effect on the MHD motion of the spherical particle is a qualitatively and quantitatively sensible function of the parameters a∕b and κa, where a and b are the radii of the particle and cavity, respectively, and κ is the reciprocal of the Debye screening length. In general, the proximity of the cavity wall reduces the MHD migration but intensifies the MHD rotation of the particle.  相似文献   

2.
The motion of a spherical colloidal particle with spontaneous electrochemical reactions occurring on its surface in an ionic solution subjected to an applied magnetic field is analyzed for an arbitrary zeta potential distribution. The thickness of the electric double layer adjacent to the particle surface is assumed to be much less than the particle radius. The solutions of the Laplace equations governing the magnetic scalar potential and electric potential, respectively, lead to the magnetic flux and electric current density distributions in the particle and fluid phases of arbitrary magnetic permeabilities and electric conductivities. The Stokes equations modified with the Lorentz force contribution for the fluid motion are dealt by using a generalized reciprocal theorem, and closed-form formulas for the translational and angular velocities of the colloidal sphere induced by the magnetohydrodynamic effect are obtained. The dipole and quadrupole moments of the zeta potential distribution over the particle surface cause the particle translation and rotation, respectively. The induced velocities of the particle are unexpectedly significant, and their dependence on the characteristics of the particle-fluid system is physically different from that for electromagnetophoretic particles or phoretic swimmers.  相似文献   

3.
The translation of a charged, elongated cylindrical nanoparticle along the axis of a nanopore driven by an imposed axial salt concentration gradient is investigated using a continuum theory, which consists of the ionic mass conservation equations for the ionic concentrations, the Poisson equation for the electric potential in the solution, and the modified Stokes equations for the hydrodynamic field. The diffusiophoretic motion is driven by the induced electrophoresis and chemiphoresis. The former is driven by the generated overall electric field arising from the difference in the ionic diffusivities and the double layer polarization, while the latter is generated by the induced osmotic pressure gradient around the charged particle. The induced diffusiophoretic motion is investigated as functions of the imposed salt concentration gradient, the ratio of the particle’s radius to the double layer thickness, the cylinder’s aspect ratio (length/radius), the ratio of the nanopore size to the particle size, the surface charge densities of the nanoparticle and the nanopore, and the type of the salt used. The induced diffusiophoretic motion of a nanorod in an uncharged nanopore is mainly governed by the induced electrophoresis, driven by the induced electric field arising from the double layer polarization. The induced particle motion is driven by the induced electroosmotic flow, if the charges of the nanorod and nanopore wall have the same sign.  相似文献   

4.
A theoretical study is presented for the dynamic electrophoretic response of a charged spherical particle in an unbounded electrolyte solution to a step change in the applied electric field. The electric double layer surrounding the particle may have an arbitrary thickness relative to the particle radius. The transient Stokes equations modified with the electrostatic effect which govern the fluid velocity field are linearized by assuming that the system is only slightly distorted from equilibrium. Semianalytical results for the transient electrophoretic mobility of the particle are obtained as a function of relevant parameters by using the Debye-Huckel approximation. The results demonstrate that the electrophoretic mobility of a particle with a constant relative mass density at a specified dimensionless time normalized by its steady-state quantity decreases monotonically with a decrease in the parameter kappaa, where kappa(-1) is the Debye screening length and a is the particle radius. For a given value of kappaa, a heavier particle lags behind a lighter one in the development of the electrophoretic mobility. In the limits of kappaa --> infinity and kappaa = 0, our results reduce to the corresponding analytical solutions available in the literature. The electrophoretic acceleration of the particle is a monotonic decreasing function of the time for any fixed value of kappaa. In practical applications, the effect of the relaxation time for the transient electrophoresis is negligible, regardless of the value of kappaa or the relative mass density of the particle.  相似文献   

5.
The problem of diffusiophoretic and electrophoretic motions of a dielectric spherical particle in an electrolyte solution situated at an arbitrary position between two infinite parallel plane walls is studied theoretically in the quasisteady limit of negligible Peclet and Reynolds numbers. The applied electrolyte concentration gradient or electric field is uniform and perpendicular to the plane walls. The electric double layer at the particle surface is assumed to be thin relative to the particle radius and to the particle-wall gap widths, but the polarization effect of the diffuse ions in the double layer is incorporated. To solve the conservative equations, the general solution is constructed from the fundamental solutions in both cylindrical and spherical coordinates. The boundary conditions are enforced first at the plane walls by the Hankel transforms and then on the particle surface by a collocation technique. Numerical results for the diffusiophoretic and electrophoretic velocities of the particle relative to those of a particle under identical conditions in an unbounded solution are presented for various cases. The collocation results agree well with the approximate analytical solutions obtained by using a method of reflections. The presence of the walls can reduce or enhance the particle velocity, depending on the properties of the particle-solution system and the relative particle-wall separation distances. The boundary effects on diffusiophoresis and electrophoresis of a particle normal to two plane walls are found to be quite significant and complicated, and generally stronger than those parallel to the confining walls.  相似文献   

6.
This study analytically examines the steady diffusioosmotic and electroosmotic flows of an electrolyte solution in a fine capillary slit with each of its inside walls covered by a layer of adsorbed polyelectrolytes. In this solvent-permeable and ion-penetrable surface charge layer, idealized polyelectrolyte segments are assumed to distribute at a uniform density. The electric double layer and the surface charge layer may have arbitrary thicknesses relative to the gap width between the slit walls. The electrostatic potential distribution on a cross section of the slit is obtained by solving the linearized Poisson–Boltzmann equation, which applies to the case of low potentials or low fixed-charge densities. Explicit formulas for the fluid velocity profile due to the imposed electrolyte concentration gradient or electric field through the slit are derived as the solution of a modified Navier–Stokes/Brinkman equation. The results demonstrate that the structure of the surface charge layer can lead to an augmented or a diminished electrokinetic flow (even a reversal in direction of the flow) relative to that in a capillary with bare walls, depending on the characteristics of the capillary, of the surface charge layer, and of the electrolyte solution. For the diffusioosmotic flow with an induced electric field, competition between electroosmosis and chemiosmosis can result in more than one reversal in direction of the flow over a range of the Donnan potential of the adsorbed polyelectrolyte in the capillary.  相似文献   

7.
Autonomous motions of a spherical nanoparticle in a nanotube filled with an electrolyte solution were investigated using a continuum theory, which consisted of the Nernst-Planck equations for the ionic concentrations, the Poisson equation for the electric potential in the solution, and the Stokes equation for the hydrodynamic field. Contrary to the usual electrophoresis, in which an external electric field is imposed to direct the motion of charged particles, the autonomous motion originates from the self-generated electric field due to the ionic concentration polarization of the liquid medium surrounding an asymmetrically charged particle. In addition to the particle motion, the interaction between the electric field generated and the free charges of the polarized solution induces electroosmotic flows. These autonomous motions of the fluid as well as the particle were examined with focus on the effects of the surface-charge distribution of the particle, the size of the nanotube, and the thickness of the electric double layer, which affected the direction and the speed of the particle significantly.  相似文献   

8.
The sedimentation in a homogeneous suspension of charged spherical particles with an arbitrary thickness of the electric double layers is analytically studied. The effects of particle interactions are taken into account by employing a unit cell model. Overlap of the double layers of adjacent particles is allowed, and the polarization effect in the double layer surrounding each particle is considered. The electrokinetic equations that govern the ionic concentration distributions, the electric potential profile, and the fluid flow field in the electrolyte solution in a unit cell are linearized assuming that the system is only slightly distorted from equilibrium. Using a perturbation method, these linearized equations are solved for a symmetrically charged electrolyte with the surface charge density (or zeta potential) of the particle as the small perturbation parameter. An analytical expression for the settling velocity of the charged sphere in closed form is obtained from a balance among its gravitational, electrostatic, and hydrodynamic forces. A closed-form formula for the sedimentation potential in a suspension of identical charged spheres is also derived by using the requirement of zero net electric current. Our results demonstrate that the effects of overlapping double layers are quite significant, even for the case of thin double layers. Copyright 2000 Academic Press.  相似文献   

9.
An analytical study is presented for the quasi-steady electrophoretic motion of a dielectric sphere situated at the center of a spherical cavity when the surface potentials are arbitrarily nonuniform. The applied electric field is constant, and the electric double layers adjacent to the solid surfaces are assumed to be much thinner than the particle radius and the gap width between the surfaces. The presence of the cavity wall causes three basic effects on the particle velocity: (1) the local electric field on the particle surface is enhanced or reduced by the wall; (2) the wall increases the viscous retardation of the moving particle; and (3) a circulating electroosmotic flow of the suspending fluid exists because of the interaction between the electric field and the charged wall. The Laplace and Stokes equations are solved analytically for the electric potential and velocity fields, respectively, in the fluid phase, and explicit formulas for the electrophoretic and angular velocities of the particle are obtained. To apply these formulas, one has to calculate only the monopole, dipole, and quadrupole moments of the zeta-potential distributions at the particle and cavity surfaces. It is found that the contribution from the electroosmotic flow developing from the interaction of the imposed electric field with the thin double layer adjacent to the cavity wall and the contribution from the wall-corrected electrophoretic driving force to the particle velocities can be superimposed as a result of the linearity of the problem.  相似文献   

10.
The steady diffusioosmotic flow of an electrolyte solution along a dielectric plane wall caused by an imposed tangential concentration gradient is analytically examined. The plane wall may have either a constant surface potential or a constant surface charge density of an arbitrary quantity. The electric double layer adjacent to the charged wall may have an arbitrary thickness, and its electrostatic potential distribution is determined by the Poisson-Boltzmann equation. The macroscopic electric field along the tangential direction induced by the imposed electrolyte concentration gradient is obtained as a function of the lateral position. A closed-form formula for the fluid velocity profile is derived as the solution of a modified Navier-Stokes equation. The direction of the diffusioosmotic flow relative to the concentration gradient is determined by the combination of the zeta potential of the wall and the properties of the electrolyte solution. For a given concentration gradient of an electrolyte along a plane wall, the magnitude of fluid velocity at a position in general increases with an increase in its electrokinetic distance from the wall, but there are exceptions. The effect of the lateral distribution of the induced tangential electric field in the double layer on the diffusioosmotic flow is found to be very significant and cannot be ignored.  相似文献   

11.
We derive the general expression for the diffusiophoretic mobility of a cylindrical particle oriented parallel to an applied electrolyte concentration gradient field in a symmetrical electrolyte solution. From the general mobility expression as combined with an approximate analytic expression with negligible error for the electric potential distribution around a cylinder, an accurate analytic mobility expression is obtained, which is applicable for arbitrary values of the particle zeta potential and the electrical double layer thickness. It is also found that the low zeta potential approximation is an excellent approximation for low-to-moderate values of the particle zeta potential.  相似文献   

12.
A theoretical study is presented for the steady diffusioosmotic flow of an electrolyte solution in a fine capillary tube generated by a constant concentration gradient imposed in the axial direction. The capillary wall may have either a constant surface potential or a constant surface charge density of an arbitrary quantity. The electric double layer adjacent to the charged wall may have an arbitrary thickness, and its electrostatic potential distribution is determined by an analytical approximation to the solution of the Poisson-Boltzmann equation. Solving a modified Navier-Stokes equation with the constraint of no net electric current arising from the cocurrent diffusion, electric migration, and diffusioosmotic convection of the electrolyte ions, the macroscopic electric field and the fluid velocity along the axial direction induced by the imposed electrolyte concentration gradient are obtained semianalytically as a function of the radial position in a self-consistent way. The direction of the diffusioosmotic flow relative to the concentration gradient is determined by the combination of the zeta potential (or surface charge density) of the wall, the properties of the electrolyte solution, and other relevant factors. For a prescribed concentration gradient of an electrolyte, the magnitude of fluid velocity at a position in general increases with an increase in its distance from the capillary wall, but there are exceptions. The effect of the radial distribution of the induced tangential electric field and the relaxation effect due to ionic convection in the double layer on the diffusioosmotic flow are found to be very significant.  相似文献   

13.
The problem of particle mobility in a field of an arbitrary number of force centers with a small action radius and in a homogeneous electric or magnetic field is considered. An exact solution of the problem within the framework of the first-order perturbations over the wave function was obtained. The results may be used for the calculation of the polarizability and diamagnetic susceptibility of many-atom molecules.  相似文献   

14.
An analytical study of diffusiophoresis in a homogeneous suspension of identical spherical charge-regulating particles with an arbitrary thickness of the electric double layers in a solution of a symmetrically charged electrolyte with a uniform prescribed concentration gradient is presented. The charge regulation due to association/dissociation reactions of ionogenic functional groups on the particle surface is approximated by a linearized regulation model, which specifies a linear relationship between the surface charge density and the surface potential. The effects of particle-particle electrohydrodynamic interactions are taken into account by employing a unit cell model, and the overlap of the double layers of adjacent particles is allowed. The electrokinetic equations that govern the electric potential profile, the ionic concentration distributions, and the fluid flow field in the electrolyte solution surrounding the particle in a unit cell are linearized assuming that the system is only slightly distorted from equilibrium. Using a regular perturbation method, these linearized equations are solved with the equilibrium surface charge density (or zeta potential) of the particle as the small perturbation parameter. Closed-form formulas for the diffusiophoretic velocity of the charge-regulating sphere correct to the second order of its surface charge density or zeta potential are derived. Our results indicate that the charge regulation effect on the diffusiophoretic mobility is quite sensitive to the boundary condition for the electric potential specified at the outer surface of the unit cell. For the limiting cases of a very dilute suspension and a very thin or very thick electric double layer, the particle velocity is independent of the charge regulation parameter.  相似文献   

15.
The problems of distribution of ion concentrations, electric field, and Lorentz force in the flux of the solution of electrolyte under external magnetic field are solved. The existence of the diffuse ion layer in magnetic flow of the dilute electrolyte is established and its characteristics are studied.  相似文献   

16.
The diffusiophoretic and electrophoretic motions of two colloidal spheres in the solution of a symmetrically charged electrolyte are analyzed using a method of reflections. The particles are oriented arbitrarily with respect to the electrolyte gradient or the electric field, and they are allowed to differ in radius and in zeta potential. The thickness of the electric double layers surrounding the particles is assumed to be small relative to the radius of each particle and to the gap width between the particles, but the effect of polarization of the mobile ions in the diffuse layer is taken into account. A slip velocity of fluid and normal fluxes of solute ions at the outer edge of the thin double layer are used as the boundary conditions for the fluid phase outside the double layers. The method of reflections is based on an analysis of the electrochemical potential and fluid velocity disturbances produced by a single dielectric sphere placed in an arbitrarily varying electrolyte gradient or electric field. The solution for two-sphere interactions is obtained in expansion form correct to O(r(12)(-7)), where r(12) is the distance between the particle centers. Our analytical results are found to be in good agreement with the available numerical solutions obtained using a boundary collocation method. On the basis of a model of statistical mechanics, the results of two-sphere interactions are used to analytically determine the first-order effect of the volume fraction of particles of each type on the mean diffusiophoretic and eletrophoretic velocities in a bounded suspension. For a suspension of identical spheres, the mean diffusiophoretic velocity can be decreased or increased as the volume fraction of the particles is increased, while the mean electrophoretic velocity is reduced with the increase in the particle concentration. Generally speaking, the particle interaction effects can be quite significant in typical situations. Copyright 2000 Academic Press.  相似文献   

17.
The electrophoretic motion of a spherical nanoparticle, subject to an axial electric field in a nanotube filled with an electrolyte solution, has been investigated using a continuum theory, which consists of the Nernst-Planck equations for the ionic concentrations, the Poisson equation for the electric potential in the solution, and the Stokes equation for the hydrodynamic field. In particular, the effects of nonuniform surface charge distributions around the nanoparticle on its axial electrophoretic motion are examined with changes in the bulk electrolyte concentration and the surface charge of the tube's wall. A particle with a nonuniform charge distribution is shown to induce a corresponding complex ionic concentration field, which in turn influences the electric field and the fluid motion surrounding the particle and thus its electrophoretic velocity. As a result, contrary to the relatively simple dynamics of a particle with a uniform surface charge, dominated by the irradiating electrostatic force, that with a nonuniform surface charge distribution shows various intriguing behaviors due to the additional interplay of the nonuniform electro-osmotic effects.  相似文献   

18.
The electrophoretic motion of a long dielectric circular cylinder with a general angular distribution of its surface potential under a transversely imposed electric field in the vicinity of a large plane wall parallel to its axis is analyzed. The thickness of the electric double layers adjacent to the solid surfaces is assumed to be much smaller than the particle radius and the gap width between the surfaces, but the applied electric field can be either perpendicular or parallel to the plane wall. The presence of the confining wall causes three basic effects on the particle velocity: (1) the local electric field on the particle surface is enhanced or reduced by the wall; (2) the wall increases viscous retardation of the moving particle; (3) an electroosmotic flow of the suspending fluid may exist due to the interaction between the charged wall and the tangentially imposed electric field. Through the use of cylindrical bipolar coordinates, the Laplace and Stokes equations are solved analytically for the two-dimensional electric potential and velocity fields, respectively, in the fluid phase, and explicit formulas for the quasisteady electrophoretic and angular velocities of the cylindrical particle are obtained. To apply these formulas, one has only to calculate the multipole moments of the zeta potential distribution at the particle surface. It is found that the existence of a plane wall near a nonuniformly charged particle can cause its translation or rotation which does not occur in an unbounded fluid with the same applied electric field.  相似文献   

19.
Transient electrophoresis of dielectric spheres   总被引:1,自引:0,他引:1  
The dynamic electrophoretic response of a spherical dielectric particle suspended in an electrolyte solution to a step change in the applied electrics field is analytically studied. The electrical double layer surrounding the particle may have either a small but finite thickness or a very large thickness relative to the particle radius. For the case of electrophoresis of a particle with a thin double layer, the local electroosmotic velocity at the outer edge of the double layer evolving with time after the external field is imposed is used as an apparent slip boundary condition at the particle surface so that the unsteady equation of motion for the fluid flow outside the double layer is solved. Closed-form formulas for the transient electrophoretic mobility of the particle are derived as functions of relevant parameters. The results demonstrate that, when the double layer surrounding the particle is relatively thin, the normalized electrophoretic mobility at a given dimensionless time decreases monotonically with a decrease in the parameter kappaa, where kappa(-1) is the Debye screening length and a is the particle radius. When the double layer of the particle is relatively thick, the particle mobility can have magnitudes comparable to those for a particle with a thin double layer in the initial stage, but will become much smaller afterward. In general, the effect of the relaxation time for transient electrophoresis is negligible, regardless of the value of kappaa.  相似文献   

20.
Ohshima H 《Electrophoresis》2002,23(13):1995-2000
A general expression is derived for the electrophoretic mobility of a spherical charged colloidal particle covered with an uncharged polymer layer in an electrolyte solution in an applied electric field for the case where the particle zeta potential is low. It is assumed that electrolyte ions as well as water molecules can penetrate the polymer layer. Approximate analytic expressions for the electrophoretic mobility of particles carrying low zeta potentials are derived for the two extreme cases in which the particle radius is very large or very small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号