首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intramolecular vibrational energy redistribution (IVR) and vibrational predissociation (VP) from the XH stretching vibrations, where X refers to O or C atom, of aromatic molecules and their hydrogen(H)-bonded clusters are investigated by picosecond time-resolved IR-UV pump probe spectroscopy in a supersonic beam. For bare molecules, we mainly focus on IVR of the OH stretch of phenol. We describe the IVR of the OH stretch by a two-step tier model and examine the effect of the anharmonic coupling strength and the density of states on IVR rate and mechanism by using isotope substitution. In the H-bonded clusters of phenol, we show that the relaxation of the OH stretching vibration can be described by a stepwise process and then discuss which process is sensitive to the H-bonding strength. We discuss the difference/similarity of IVR/VP between the "donor" and the "acceptor" sites in phenol-ethylene cluster by exciting the CH stretch vibrations. Finally, we study the vibrational energy transfer in the isolated molecules having the alkyl chain, namely phenylalcanol (PA). In this system, we measure the rate constant of the vibrational energy transfer between the OH stretch and the vibrations of benzene ring which are connected at the both ends of the alkyl chain. This energy transfer can be called "through-bond IVR". We investigate the three factors which are thought to control the energy transfer rate; (1) "OH <--> next CH(2)" coupling, (2) chain length and (3) conformation. We discuss the energy transfer mechanism in PAs by examining these factors.  相似文献   

2.
Intramolecular vibrational energy flow in excited bridged azulene-anthracene compounds is investigated by time-resolved pump-probe laser spectroscopy. The bridges consist of molecular chains and are of the type (CH(2))(m) with m up to 6 as well as (CH(2)OCH(2))(n) (n=1,2) and CH(2)SCH(2). After light absorption into the azulene S(1) band and subsequent fast internal conversion, excited molecules are formed where the vibrational energy is localized at the azulene side. The vibrational energy transfer through the molecular bridge to the anthracene side and, finally, to the surrounding medium is followed by probing the red edge of the azulene S(3) absorption band at 300 nm and/or the anthracene S(1) absorption band at 400 nm. In order to separate the time scales for intramolecular and intermolecular energy transfer, most of the experiments were performed in supercritical xenon where vibrational energy transfer to the bath is comparably slow. The intramolecular equilibration proceeds in two steps. About 15%-20% of the excitation energy leaves the azulene side within a short period of 300 fs. This component accompanies the intramolecular vibrational energy redistribution (IVR) within the azulene chromophore and it is caused by dephasing of normal modes contributing to the initial local excitation of the azulene side and extending over large parts of the molecule. Later, IVR in the whole molecule takes place transferring vibrational energy from the azulene through the bridge to the anthracene side and thereby leading to microcanonical equilibrium. The corresponding time constants tau(IVR) for short bridges increase with the chain length. For longer bridges consisting of more than three elements, however, tau(IVR) is constant at around 4-5 ps. Comparison with molecular dynamics simulations suggests that the coupling of these chains to the two chromophores limits the rate of intramolecular vibrational energy transfer. Inside the bridges the energy transport is essentially ballistic and, therefore, tau(IVR) is independent on the length.  相似文献   

3.
《Chemical physics》1987,115(3):469-479
The results of calculations of the dependence of the radiationless rate constant on the excess of excitation energy within the two-electronic states model under the weak coupling and statistical limits are presented. It is assumed that the exact molecular states for a given electronic configuration are global in character containing equal contributions from all degenerated vibrational levels at a given excitation energy due to intramolecular vibrational relaxation (IVR). The results of calculations indicate an important role of the low-frequency vibrational modes, the potential energy surfaces of which cross between the two electronic states involved into the radiationless process. The sharp increase of the rate constant is predicted for the excitation energy below the diabatic crossing point, followed by saturation at higher energies. The calculated rate constants for the T1→S0 intersystem crossing in pyrazine and benzene are in good agreement with experimental observations. Some comments concerning the “channel-three” phenomenon in benzene are presented.  相似文献   

4.
Deuterium Quadrupole Coupling Constant (DQCC) in benzene was determined both experimentally by Nuclear Magnetic Resonance spectroscopy in Liquid Crystalline solutions (LC NMR) and theoretically by ab initio electronic structure calculations. DQCCs were measured for benzene-d(1) and 1,3,5-benzene-d(3) using several different liquid crystalline solvents and taking vibrational and deformational corrections into account in the analysis of experimental dipolar couplings, used to determine the orientational order parameter of the dissolved benzene. The experimental DQCC results for the isotopomers benzene-d(1) and 1,3,5-benzene-d(3) are found to be 187.7 kHz and 187.3 kHz, respectively, which are essentially equal within the experimental accuracy (+/-0.4 kHz). Theoretical results were obtained at different C-D bond lengths, and by applying corrections for electron correlation and rovibrational motion on top of large-basis-set Hartree-Fock results. The computations give a consistent DQCC of ca. 189 kHz for three different isotopomers; benzene-d(1), 1,3,5-benzene-d(3), and benzene-d(6), revealing that isotope effects are not detectable within the present experimental accuracy. Calculations carried out using a continuum solvation model to account for intermolecular interaction effects result in very small changes as compared to the data obtained in vacuo. The comparison of theoretical and experimental results points out the selection of the underlying molecular geometry as the most likely source of the remaining discrepancy of less than 2 kHz. Such an agreement between the calculated and the experimental DQCC results can only be achieved if rovibrational effects are considered on one hand in the experimental direct dipolar coupling data, and on the other hand in the theoretical property calculation, as is done presently.  相似文献   

5.
A singular value decomposition based harmonic inversion signal processing scheme is applied to the semiclassical initial value representation (IVR) calculation of molecular vibrational states. Relative to usual IVR procedure of Fourier analysis of a signal made from the Monte Carlo evaluation of the phase space integral in which many trajectories are needed, the new procedure obtains acceptable results with many fewer trajectories. Calculations are carried out for vibrational energy levels of H2O to illustrate the overall procedure.  相似文献   

6.
We employ zero-kinetic-energy (ZEKE) photoelectron spectroscopy with nanosecond laser pulses to study intramolecular vibrational redistribution (IVR) in S(1) para-fluorotoluene. The frequency resolution of the probe step is superior to that obtained in any studies on this molecule to date. We focus on the behavior of the 13(1) (C-CH(3) stretch) and 7a(1) (C-F stretch) vibrational states whose dynamics have previously received significant attention, but with contradictory results. We show conclusively that, under our experimental conditions, the 7a(1) vibrational state undergoes significantly more efficient IVR than does the 13(1) state. Indeed, under the experimental conditions used here, the 13(1) state undergoes very little IVR. These two states are especially interesting because their energies are only 36 cm(-1) apart, and the two vibrational modes have the same symmetry. We discuss the role of experimental conditions in observations of IVR in some detail, and thereby suggest explanations for the discrepancies reported to date.  相似文献   

7.
We study the intramolecular vibrational energy redistribution (IVR) dynamics of an effective spectroscopic Hamiltonian describing the four coupled high frequency modes of CDBrClF. The IVR dynamics ensuing from nearly isoenergetic zeroth-order states, an edge (overtone) and an interior (combination) state, is studied from a state space diffusion perspective. A wavelet based time-frequency analysis reveals an inhomogeneous phase space due to the trapping of classical trajectories. Consequently the interior state has a smaller effective IVR dimension as compared to the edge state.  相似文献   

8.
Doppler-free two-photon excitation spectra and the Zeeman effects for the 1 band of the S1 1B2u <-- S0 1A1g transition in gaseous benzene-d6 were measured. Although the spectral lines were strongly perturbed, almost all of the lines near the band origin could be assigned. From a deperturbation analysis, the perturbation near the band origin was identified as originating from an anharmonic resonance interaction. Perturbation centered at K = 28-29 in the 14(0)1 band was analyzed, and it was identified as originating from a perpendicular Coriolis interaction. The symmetry and the assignment of the perturbing state proposed by Schubert et al. (Schubert, U.; Riedle, E.; Neusser, H. J. J. Chem. Phys. 1989, 90, 5994.) were confirmed. No perturbation originating from an interaction with a triplet state was observed in both bands. From the Zeeman spectra and the analysis, it is demonstrated that rotationally resolved levels are not mixed with a triplet state. The intersystem mixing is not likely to occur at levels of low excess energy in the S1 state of an isolated benzene. Nonradiative decay of an isolated benzene in the low vibronic levels of the S1 state will occur through the internal mixing followed by the rotational and vibrational relaxation in the S0 state.  相似文献   

9.
Femtosecond IR pump UV probe spectroscopy was employed in the gas phase to study intramolecular vibrational energy redistribution (IVR) in benzene and five monosubstituted derivatives thereof. After selective excitation of the first overtone of the ring CH-stretch vibration, all molecules showed the same two-step redistribution dynamics characteristic for nonstatistical IVR. The nature of the substituent influences mainly the second, slower IVR component. The presence of an internal rotor does not alter the redistribution rate or pathway compared to that of a monatomic substituent of equal mass. Coupling order model calculations reflect the experimental trends well if the polyatomic substituents are regarded as decoupled from the intra-ring dynamics and modeled as point masses.  相似文献   

10.
Ultrafast luminescence spectroscopy has been undertaken on three iridium cored phosphorescent complexes, with the Ir(ppy)3 molecule being compared with two Ir(ppy)3 cored dendrimers. Energy dissipation by intramolecular vibrational redistribution (IVR) and cooling shows as a luminescence decay because it decreases the admixture of singlet character to the emitting triplet state. A larger amount of vibrational energy dissipates by IVR in dendrimer complexes. We have therefore found a methodology of obtaining unambiguous information on the IVR process and show its potential to study IVR rates as a function of vibrational energy.  相似文献   

11.
The intramolecular vibrational energy redistribution (IVR) in S(1) deuterated p-difluorobenzene (pDFB-d(4) or -d(4)) has been studied to determine the IVR threshold. For this, the S(1) <-- S(0) fluorescence excitation (FE) spectrum of jet-cooled d(4) was investigated in the 2000-3250 cm(-1) vibronic energy range of the S(1) electronic state, and single vibronic level fluorescence (SVLF) spectra have been acquired by exciting selected levels lying between 750 and 2850 cm(-1) in vibrational energy in the S(1) excited state. Congestion of the dispersed fluorescence in this molecule first appears as the vibrational level energy climbs above 2000 cm(-1). By comparing the SVLF spectra of pDFB-d(4) with those of p-difluorobenzene (pDFB or -h(4)), it is obvious that IVR threshold in -d(4) is localized with a few hundreds cm(-1) lower than that in pDFB. This decrease is entirely due to the increase in vibrational state density due to deuteration.  相似文献   

12.
The influence of organics on the structure of water adsorbed on activated carbons was studied using adsorption of nitrogen, benzene, and water, and by (1)H NMR spectroscopy with freezing out of bulk water with the presence of benzene-d(6) or chloroform-d. It was found that interactions of water with the activated carbon surface depend on both structural characteristics (contributions of micro- and mesopores, pore size distributions) of adsorbents and chemical properties (changed by oxidation or reduction) of the adsorbents. Moreover, the interfacial behavior of water is affected by water-insoluble organics such as benzene and chloroform. Changes in the Gibbs free energy of water adsorbed on carbons exposed to air, water, chloroform-d, or benzene-d(6) are related to textural properties of adsorbents and the degree of their oxidation. Since chloroform-d and benzene-d(6) are strongly adsorbed on activated carbons and immiscible with water they replace a significant portion of adsorbed water in micropores, on the walls of mesopores, and in the transport pores of carbons causing changes in the Gibbs free energy and other characteristics of water.  相似文献   

13.
Nonequilibrium molecular dynamics (MD) simulations and instantaneous normal mode (INMs) analyses are used to study the vibrational relaxation of the C-H stretching modes (ν(s)(CH?)) of deuterated N-methylacetamide (NMAD) in aqueous (D2O) solution. The INMs are identified unequivocally in terms of the equilibrium normal modes (ENMs), or groups of them, using a restricted version of the recently proposed Min-Cost assignment method. After excitation of the parent ν(s)(CH?) modes with one vibrational quantum, the vibrational energy is shown to dissipate through both intramolecular vibrational redistribution (IVR) and intermolecular vibrational energy transfer (VET). The decay of the vibrational energy of the ν(s)(CH?) modes is well fitted to a triple exponential function, with each characterizing a well-defined stage of the entire relaxation process. The first, and major, relaxation stage corresponds to a coherent ultrashort (τ(rel) = 0.07 ps) energy transfer from the parent ν(s)(CH?) modes to the methyl bending modes δ(CH?), so that the initially excited state rapidly evolves into a mixed stretch-bend state. In the second stage, characterized by a time of 0.92 ps, the vibrational energy flows through IVR to a number of mid-range-energy vibrations of the solute. In the third stage, the vibrational energy accumulated in the excited modes dissipates into the bath through an indirect VET process mediated by lower-energy modes, on a time scale of 10.6 ps. All the specific relaxation channels participating in the whole relaxation process are properly identified. The results from the simulations are finally compared with the recent experimental measurements of the ν(s)(CH?) vibrational energy relaxation in NMAD/D?O(l) reported by Dlott et al. (J. Phys. Chem. A 2009, 113, 75.) using ultrafast infrared-Raman spectroscopy.  相似文献   

14.
The unimolecular dissociation dynamics of aluminum clusters following collision with either a rare gas atom or a surface is investigated by classical trajectory simulations with model potentials. Two conformers of Al(6) with very distinct shapes, i.e., the spherical O(h) and planar C(2)(h) clusters, are considered in this work. The initial vibrational energy and angular momentum distributions resulting from collision, as well as the energy and angular momentum resolved lifetime distributions, of excited clusters were determined for both collision-induced dissociation (CID) and surface-induced dissociation (SID) processes. The partitioning of excitation energy acquired upon collision was found to depend on the excitation mechanism (CID or SID), as well as on the cluster molecular shape, especially in the case of CID. For both types of processes, the energy and angular momentum resolved excited cluster lifetime distributions were found to decay exponentially, in agreement with statistical theories of chemical reactions, suggesting intrinsic Rice-Ramsperger-Kassel-Marcus (RRKM) behavior. Moreover, the simulated microcanonical rate constants determined from the cluster lifetime distributions are in good agreement with the predictions of the orbiting transition state model of phase space theory (OTS/PST), which further supports the statistical character of cluster CID and SID. Thus, in the CID and SID of highly fluxional systems such as aluminum clusters, the rate of intramolecular vibrational energy redistribution (IVR) is much faster than the dissociation rate, which validates one of the key assumptions, i.e., post-collision statistical behavior, underlying the models that are routinely used to determine cluster binding energies from experimental CID/SID cross sections.  相似文献   

15.
Transient electronic absorption measurements reveal the vibrational relaxation dynamics of CH(3)I following excitation of the C-H stretch overtone in the gas phase and in liquid solutions. The isolated molecule relaxes through two stages of intramolecular vibrational relaxation (IVR), a fast component that occurs in a few picoseconds and a slow component that takes place in about 400 ps. In contrast, a single 5-7 ps component of IVR precedes intermolecular energy transfer (IET) to the solvent, which dissipates energy from the molecule in 50 ps, 44 ps, and 16 ps for 1 M solutions of CH(3)I in CCl(4), CDCl(3), and (CD(3))(2)CO, respectively. The vibrational state structure suggests a model for the relaxation dynamics in which a fast component of IVR populates the states that are most strongly coupled to the initially excited C-H stretch overtone, regardless of the environment, and the remaining, weakly coupled states result in a secondary relaxation only in the absence of IET.  相似文献   

16.
We report stimulated Raman spectra at 0.2 and 0.03 cm(-1) resolution in the CH-stretching region of jet-cooled fluorene. The results were obtained by a version of ionization-gain stimulated Raman spectroscopy in which resonant two-photon ionization probing of the state-population changes arising from stimulated Raman transitions is assisted by the process of intramolecular vibrational redistribution (IVR) in the Raman-excited molecule. The fluorene spectra reveal extensive vibrational coupling interactions involving both the aliphatic and aromatic CH-stretching first excited states with nearby background states. Results pertaining to the symmetric aliphatic CH-stretching fundamental are consistent with a tier model of IVR and point to vibrational energy flow out of the CH stretch on a approximately 1 ps time scale with subsequent redistribution on a approximately 5 ps time scale.  相似文献   

17.
The potential energy surfaces of the lowest excited states of benzene and pyrazine are investigated as a function of some of the symmetry-adapted internal coordinates by means of the INDO/S method. A large stabilization of the T2 (ππ*) state of pyrazine (≈ 0.5 eV) along the S8b vibrational coordinate is found. The calculated potential energy in some excited states (T1 in benzene, T2 and S2 in pyrazine) is a very flat function of the S16b vibrational coordinate, leading to a crossing with the potential energy of the ground state at relatively small excess of vibrational energy (≈ 1 eV). Thus the ν16b vibrational mode is postulated to play an important role in the radiationless relaxation to the ground states of these systems. No such crossing has been found near the “channel three” threshold of benzene.  相似文献   

18.
By use of an analytic potential energy surface developed in this work for nitric acid, the quasi-classical trajectory method was used to simulate intramolecular vibrational energy redistribution (IVR). A method was developed for monitoring the average vibrational energy in the OH (or OD) mode that uses the mean-square displacement of the bond length calculated during the trajectories. This method is effective for both rotating and nonrotating molecules. The calculated IVR time constant for HONO(2) decreases exponentially with increasing excitation energy, is almost independent of rotational temperature, and is in excellent agreement with the experimental determination (Bingemann, D.; Gorman, M. P.; King, A. M.; Crim, F. F. J. Chem.Phys. 1997, 107, 661). In DONO(2), the IVR time constants show more complicated behavior with increasing excitation energy, apparently due to 2:1 Fermi-resonance coupling with lower frequency modes. This effect should be measurable in experiments.  相似文献   

19.
Vibrational energy relaxation (VER) of the Fermi polyads in the CH stretching vibration of the benzene dimer (Bz(2)) and trimer (Bz(3)) has been investigated by picosecond (ps) time-resolved IR-UV pump-probe spectroscopy in a supersonic beam. The vibrational bands in the 3000-3100 cm(-1) region were excited by a ps IR pulse and the time evolutions at the pumped and redistributed (bath) levels were probed by resonance enhanced multiphoton ionization with a ps UV pulse. For Bz(2), a site-selective excitation in the T-shaped structure was achieved by using the isotope-substituted heterodimer hd, where h = C(6)H(6) and d = C(6)D(6), and its result was compared with that of hh homodimer. In the hd heterodimer, the two isomers, h(stem)d(top) and h(top)d(stem), show remarkable site-dependence of the lifetime of intracluster vibrational energy redistribution (IVR); the lifetime of the Stem site [h(stem)d(top), 140-170 ps] is ~2.5 times shorter than that of the Top site [h(top)d(stem), 370-400 ps]. In the transient UV spectra, a broad electronic transition due to the bath modes emerges and gradually decays with a nanosecond time scale. The broad transition shows different time profile depending on UV frequency monitored. These time profiles are described by a three-step VER model involving IVR and vibrational predissociation: initial → bath1(intramolecular) → bath2(intermolecular) → fragments. This model also describes well the observed time profile of the Bz fragment. The hh homodimer shows the stepwise VER process with time constants similar to those of the hd dimer, suggesting that the excitation-exchange coupling of the vibrations between the two sites is very weak. Bz(3) also exhibited the stepwise VER process, though each step is faster than Bz(2).  相似文献   

20.
Quasiclassical trajectory calculations are used to investigate the dynamics of the OH(v) + NO(2) --> HONO(2) --> OH(v') + NO(2) recombination/dissociation reaction on an analytic potential energy surface (PES) that gives good agreement with the known structure and vibrational frequencies of nitric acid. The calculated recombination rate constants depend only weakly on temperature and on the initial vibrational energy level of OH(v). The magnitude of the recombination rate constant is sensitive to the potential function describing the newly formed bond and to the switching functions in the PES that attenuate inter-mode interactions at long range. The lifetime of the nascent excited HONO(2) depends strongly not only on its internal energy but also on the identity of the initial state, in disagreement with statistical theory. This disagreement is probably due to the effects of slow intramolecular vibrational energy redistribution (IVR) from the initially excited OH stretching mode. The vibrational energy distribution of product OH(v') radicals is different from statistical distributions, a result consistent with the effects of slow IVR. Nonetheless, the trajectory results predict that vibrational deactivation of OH(v) via the HONO(2) transient complex is approximately 90% efficient, almost independent of initial OH(v) vibrational level, in qualitative agreement with recent experiments. Tests are also carried out using the HONO(2) PES, but assuming the weaker O-O bond strength found in HOONO (peroxynitrous acid). In this case, the predicted vibrational deactivation efficiencies are significantly lower and depend strongly on the initial vibrational state of OH(v), in disagreement with experiments. This disagreement suggests that the actual HOONO PES may contain more inter-mode coupling than found in the present model PES, which is based on HONO(2). For nitric acid, the measured vibrational deactivation rate constant is a useful proxy for the recombination rate, but IVR randomization of energy is not complete, suggesting that the efficacy of the proxy method must be evaluated on a case-by-case basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号