首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phase behavior of a partially miscible blend of poly(ethylene oxide) (PEO) and cellulose acetate butyrate (CAB) and the crystalline microstructure of PEO in the blend were studied with differential scanning calorimetry (DSC), optical microscopy, and synchrotron small‐angle X‐ray scattering (SAXS) methods. PEO/CAB showed a lower critical solution temperature (LCST) of 168 °C at the critical composition of PEO of 60 wt %. All blend compositions showed a single glass‐transition temperature (Tg) when they were prepared at temperatures lower than the LCST. However, with increasing CAB content, Tg of the blend changed abruptly at 70 wt % CAB; that is, a cusp existed. Below 70 wt % CAB, the change in Tg with blend composition was predicted by the Brau–Kovacs equation, whereas this change was predicted by the Fox equation at higher CAB contents. A gradual but small depression of the melting point of PEO in the blend with an increasing amount of CAB suggested that the PEO/CAB blends exhibited a weak intermolecular interaction. From DSC and SAXS experiments, it was found that amorphous CAB was incorporated into the interlamellar region of PEO for blends with less than 20 wt % CAB, whereas it was segregated to exist in the interfibrillar region in PEO for other blends with larger amounts of CAB. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1673–1681, 2002  相似文献   

2.
The mechanical recyclability of the technical biopolymers polytrimethylene terephthalate (PTT), cellulose acetate butyrate (CAB), polybutylene succinate (PBS) and polyhydroxy alkanoate blend (PHBV/PBAT) was evaluated by assessing the effect of repeated polymer processing (extrusion without further compounding with virgin material or additives) on the material structure and mechanical properties. Reprocessing-induced hydrolytic degradation was found to be the prevalent aging mechanism of the investigated biopolymer grades. However, susceptibility to hydrolysis, and thus maintenance of the performance characteristics, differed strongly between the biopolymer types. To that effect, PTT and CAB especially exhibit a high potential for mechanical recycling. By taking advantage of appropriate additivation, the mechanical recyclability of PBS and PHBV/PBAT is also assumed to be high.  相似文献   

3.
Gelatin, a natural proteinous polymer, was used to co-electrospin with poly(butylene succinate) (PBS) in order to improve the mechanical properties of PBS membrane and facilitate its applications in biomedical field. The PBS/gelatin blend membranes have narrower distribution of fiber diameter and smoother surface than neat PBS membrane. The contact angles, water absorption rates and water uptakes of the PBS/gelatin blend membranes were measured, showing increased hydrophilicity. The interaction between PBS and gelatin was investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and differential scanning calorimetry (DSC). The mechanical properties of PBS/gelatin blend membranes in both dry and wet states were evaluated by uniaxial tensile tests. In the dry state, the PBS/gelatin blend membrane containing 10% gelatin has a 3-times increase in tensile strength without any adverse effect on ductility because of the existence of interaction between the two blend components, little change in crystallinity of PBS, and possible interaction between any adjacent fibers; the tensile strength and elongation at break are even better in the wet state attributed to some gelatin on fiber surfaces, which act as a binder in the presence of water. The potential applications of PBS/gelatin blend membranes were demonstrated by successful immobilization of thrombin, a clinically-used hemostatic drug. The thrombin-loaded membrane could be used for rapid hemostasis.  相似文献   

4.
MISCIBILITY, CRYSTALLIZATION AND MECHANICAL PROPERTIES OF PPC/PBS BLENDS   总被引:1,自引:0,他引:1  
In this paper,melt blends of poly(propylene carbonate)(PPC)with poly(butylene succinate)(PBS)were characterized by dynamic mechanical analysis(DMA),differential scanning calorimetry(DSC),tensile testing,wide-angle X-ray diffraction(WAXD),polarized optical microscopy and thermogravimetric analysis(TGA).The results indicated that the glass transition temperature of PPC in the 90/10 PPC/PBS blend was decreased by about 11K comparing with that of pure PPC.The presence of 10% PBS was partially miscible with PPC.The 90/10 PPC/PBS blend had better impact ==========and tensile strength than those of the other PPC/PBS blends.The glass transition temperature of PPC in the 80/20,70/30,and 60/40 PPC/PBS blends was improved by about 4.9 K,4.2 K,and 13 K comparing with that of pure PPC,respectively;which indicated the immiscibility between PPC and PBS.The DSC results indicated that the crystallization of PBS became more difficult when the PPC content increased.The matrix of PPC hindered the crystallization process of PBS.While the content of PBS was above 20%,significant crystallization-induced phase separation was observed by polarized optical microscopy. It was found from the WAXD analysis that the crystal structure of PBS did not change,and the degree of crystallinity increased with increasing PBS content in the PPC/PBS blends.  相似文献   

5.
Nanostructured materials based on organically modified montmorillonite (OMMT) and polypropylene (PP)/poly(butylene succinate) (PBS) blend were prepared via melt-mixing of PP, PBS, and OMMT in a batch mixer. The weight ratio of PP and PBS was 70:30, and the OMMT loading varied from 0.5 to 5 wt%. The surface morphologies of unmodified and OMMT-modified blend were studied by field-emission scanning electron microscopy. Results showed that the particle size of the dispersed PBS phase was significantly reduced with the addition of a small amount of OMMT (1.5 wt%). Upon the addition of 5 wt% of OMMT, the domain size of the dispersed PBS phase changed significantly from the unmodified blend, and a homogeneous dispersion of very fine particles of PBS was observed. The degree of dispersion of silicate layers in the blend matrix was characterized by X-ray diffraction and transmission electron microscopy. The improved adhesion between the phases and the fine morphology of the dispersed phase contributed to the significant improvement in the properties and thermal stability of the final nanocomposite materials. On the basis of these results, we describe a general understanding of how the morphology is related to the final properties of OMMT-incorporated PP/PBS blend.  相似文献   

6.
胡宽  江海  黄冬  刘畅  张坤玉  潘莉 《应用化学》2019,36(9):996-1002
以来源于可再生资源聚丁二酸丁二醇酯(PBS)和氯醚橡胶(ECO)作为聚乳酸(PLA)的增韧改性剂,通过熔融共混的方法制备了PLA/PBS/ECO三元共混体系。动态力学分析和扫描电子显微镜结果表明,ECO促进了PBS和PLA之间的相容性。力学性能测试表明,ECO与PBS可实现对聚乳酸基体的协同增韧: PLA/PBS/ECO(70/20/10)显示出最优的拉伸性能,断裂伸长率高达270%;PLA/PBS/ECO(70/10/20)的冲击强度提高至23.7 kJ/m2,是纯聚乳酸的12倍。结合形态结构和冲击断面形貌分析表明ECO的存在可起到增容/增韧双重作用, 与柔性PBS产生良好的协同效应,有效改善聚乳酸材料的韧性。我们的研究表明,构造PLA-柔性生物聚酯和生物基弹性体多元共混体系是一种获得高性能生物基材料简单高效的手段。  相似文献   

7.
Green biodegradable thermoplastic natural rubber (GB‐TPNR) based on simple blend of natural rubber (NR) and poly(butylene succinate) (PBS) was prepared using three NR alternatives: unmodified NR and epoxidized NR with 25‐ or 50‐mol% epoxide (ie, ENR‐25 or ENR‐50). It was found that ENR‐50/PBS blend showed the best compatibility, which resulted in superior mechanical and thermal properties with the highest crystallinity of the PBS phase, on comparing with the ENR‐25/PBS and NR/PBS blends. This might be attributed to stronger chemical interactions between the epoxide groups in ENR‐50 and the polar functional groups in PBS, which were confirmed by Fourier transform infrared (FTIR). Furthermore, scanning electron microscopy (SEM), atomic force microscopy (AFM), and polarizing optical microscopy (POM) micrographs of ENR‐50/PBS blend revealed phase separation with finer‐grained cocontinuous structure than in ENR‐25/PBS and NR/PBS simple blends. Furthermore, the chemical interactions in ENR‐50/PBS blend enhanced the resistance to accelerated weathering.  相似文献   

8.
通过挤出制备了可生物降解聚丁二酸丁二醇酯(PBS)和3种聚乳酸(PLA)含量(7 wt%、15 wt%和20 wt%)的PBS/PLA共混物样品,采用超临界二氧化碳作为物理发泡剂对样品进行间歇发泡,研究发泡样品的泡孔结构,并分析其形成机理.在120oC发泡温度(Tf)下,借助PLA对PBS熔体黏弹性尤其是熔体强度的改善,获得了分布较均匀、形状较规则、直径较小(平均值约10μm)的微孔;共混物发泡样品的直径分布明显变窄,且符合高斯分布,这归因于细小的PLA相较均匀地分布于PBS基体中.进一步地,研究Tf对PBS和PLA含量为15 wt%的PBS/PLA共混物发泡样品泡孔结构的影响.结果表明,加入15 wt%的PLA使PBS的Tf下限从115oC降低至110oC,并显著改善了较高Tf(120和125oC)下制备的发泡样品内泡孔结构的均匀性.  相似文献   

9.
10.
王学川  晏超 《高分子科学》2014,32(4):488-496
The effects of crystallization temperature and blend ratio on the polymorphic crystal structures of poly(butylene adipate)(PBA) in poly(butylene succinate)(PBS)/poly(butylene adipate)(PBS/PBA) blends were studied by means of differential scanning calorimetry(DSC), wide-angle X-ray diffraction(XRD) and atomic force microscopy(AFM). It was revealed that the polymorphism of PBA can be regulated by the blend ratio even in a non-isothermal crystallization process. The results demonstrate that high temperature favors flat-on α crystals, while low temperature contributes to edge-on β crystals. It was also found that the effect of blend ratio on the crystallization mechanism of PBA is well coincident with that of the crystallization temperature. The increment of PBS content in the PBS/PBA blend gives rise to more β-form crystals of PBA. For those PBS/PBA blends with low PBA content, the interlamellar phase segregation of PBA makes its molecular chains so difficult to diffuse from one isolated microdomain to another that high crystallization temperature and sufficiently long crystallization time will be required if the PBA α-type crystals are targeted.  相似文献   

11.
Cellulose (CE) composite films with high tensile strength, modulus, remarkable elongation as well as excellent electrical conductivity were successfully prepared by dispersing poly(butylene succinate) (PBS) and multiwalled carbon nanotubes (MWCNTs) in CE matrix via the help of ionic liquid 1-allyl-3-methylimidazolium chloride. Fourier transform infrared spectroscopy and differential scanning calorimetry results verified that a physical interaction junction existed between PBS and CE. Scanning electron micrograph (SEM) showed that the low content PBS was uniformly dispersed in CE matrix, leading to a tough and ductile fractured surface. The elongation at break of CE composite film with 1 wt% PBS was increased to 25.9 %, which showed an increase of 325 % compared to that of neat CE film (6.07 %). But high-content PBS acted as the structural defect in the CE matrix. MWCNTs were further added to improve the mechanical and conductive properties of the composite film. The tensile strength and Young’s modulus of MWCNT/CE-PBS composite film with 4 wt% MWCNTs were respectively increased by 33.6 and 140 % compared to CE-PBS film. The electrical conductivity of MWCNT/CE-PBS film was also improved by 8–9 orders of magnitude from 2.5 × 10?14 to 1.3 × 10?5 S/m.  相似文献   

12.
罗发亮  王笃金 《高分子科学》2013,31(12):1685-1696
In the present work, the blend of poly(butylene succinate) (PBS) and bisphenol A (BPA) was prepared by solution mixing, and the intermolecular interactions between the two components were characterized by a combination of nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR). The results showed that intermolecular hydrogen-bonding forms between the carbonyl group of PBS and phenol hydroxyl of BPA. With the increase of BPA content, more hydrogen bonds were formed. The effect of hydrogen bonding on the crystallization behavior of PBS was investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The results showed that the overall isothermal crystallization kinetics and the spherulite growth rate of PBS decrease with the increase of BPA content, while the PBS spherulite size increases with BPA content.  相似文献   

13.
Miscible blends of PHB and CAB were prepared by the solvent-casting method with various blend compositions, and their orientation behavior was investigated during uniaxial drawing. X-ray analysis revealed that the orientation of the crystallizable PHB component in the drawn PHB/CAB blends was changed from c-axis-orientation to a-axis-orientation with increasing CAB content. The a-axis-orientation was a result from the a-axis-oriented crystal growth caused by the intramolecular nucleation and the confined crystal growth. For quantitative assessment of the chain orientation, the Hermans orientation functions of the two respective components were obtained from the polarized FT-IR measurements. The orientation function of pure PHB stretched to 5 times of its initial length was approximately 0.8. However the value decreased rapidly with increasing CAB content, and it turned to a negative value from 30 wt.-% CAB content. This indicates that the PHB chains were aligned perpendicular to the drawing direction. On the contrary, the value of the CAB component remained almost unchanged at about 0.1 regardless of the blend composition and the annealing time, indicating that the CAB chains were constantly oriented parallel to the drawing direction without any chain relaxation. In addition, SAXS analysis suggested that the lamellar stacking direction also changed from parallel to perpendicular in the stretching direction with increasing CAB content.  相似文献   

14.
The release rate of drugs from an OROS® is controlled by semipermeable membranes composed typically of cellulose acetate (CA) with various flux enhancers. Cellulose acetate butyrate (CAB) was identified as a viable alternative. The CAB membrane matched the CA membrane in robustness but had superior drying properties, offering particular advantages for thermolabile formulations. Studies were conducted to characterize CAB membrane properties with respect to performance of OROS® systems. Four different membrane formulations with varying plasticizer type and concentration were investigated. The CAB based membranes exhibited superior drying characteristics and similar functionality to the CA:polyethylene glycol (PEG) membranes used as a control. A linear relationship was observed between the level of flux enhancer and release rate. The stability of the membrane was evaluated based on release profiles after system storage at various conditions. The CAB membranes appeared to have stability comparable to the standard CA membrane. A linear relationship between membrane weight and release rate as well as the time required to release 90% of a drug from the system [T90] for a model formulation was observed. In conclusion, the newly identified alternative membrane composition allows for the use of thinner membranes, thereby reducing cost of goods, coating time and, most importantly, membrane drying time.  相似文献   

15.
Blending poly(butylene succinate) (PBS) with polylactide (PLLA) has proven effective in improving heat resistance of PLLA fibers. Unfortunately, it remains challenging to maintain good spinnability for PLLA/PBS blends with high content of PBS with which further improved heat resistance could be anticipated. In this study, reactive melt-extrusion was devised to in-situ generate PLLA-PBS copolymers by introducing zinc acetate as a transesterification catalyst into PLLA/PBS blends. The compatibility between the PLLA and PBS phases was greatly improved by the formation of PLLA-PBS copolymers, resulting in excellent melt-spinnability even for the PLLA/PBS blends with high PBS content up to 20 wt%. In addition, an increase in crystallinity of PLLA was achieved in PLLA/PBS blend fibers, thanks to the enhanced compatibility. More importantly, the presence of PBS nuclei retarded the molecular orientation of the amorphous PLLA phase, consistent with the effective results from the relaxation heat-setting treatment. These led to an exceptionally improved heat resistance of the PLLA/PBS blend fibers. As an encouraging result, the boiling water shrinkage was significantly reduced from ca. 20% for neat PLLA fibers to 3.7% for the PLLA/PBS blend fibers with 20 wt% PBS content. These findings may open up a facile and effective route to develop PLLA/PBS blend fibers showing sound spinnability, greatly improved heat resistance and softness.  相似文献   

16.
New polyesters were synthesized using Krebs cycle acids. Poly(1, 4-butanediol dilactate succinate)(PBDS) and poly(1, 4-butanediol dilactate 2-acetoxy succinate)(PBDAS) were prepared by the polycondensation of 1, 4-butanediol dilactate with succinic anhydride and 2-acetoxy succinic acid, respectively. Poly(1, 4-butanediol succinate)(PBS) was also synthesized from 1, 4-butanediol and succinic anhydride. PBS/PBDS and PBS/PBDAS blends were prepared by the method of solvent casting. The effects of crystallization time and temperature onto melting behavior of PBS/PBDS and PBS/PBDAS blends were investigated by differential scanning calorimetry. The compatibility of each blend system was discussed using equilibrium melting point depressions. The biodegradation behavior was studied using PBS, PBDS, and PBDAS as the sole carbon source by Aspergillus niger. The molecular weights of the polymers which were obtained from GPC analysis decreased after degradation in five weeks.  相似文献   

17.
Low-input high-diversity (LIHD) mixtures of native grassland perennials were subjected to a supercritical treatment process with the aim of obtaining hydrogen-rich gases. The process was studied based on the following treatment variables: reaction temperature (374 °C to 575 °C, corresponding to a pressure range of 22.1 to 40 MPa), residence time (10 to 30 min), biomass content in the feed, and catalysts (0% to 4% NaOH and solid alkali CaO–ZrO2). The gaseous phase produced from gasification of LIHD primarily consisted of hydrogen (H2), with a mixture of carbon monoxide (CO), methane (CH4), and carbon dioxide (CO2). The statistical significance of treatment variables was evaluated using analysis of variance (ANOVA). It showed that at the level of P?<?0.05, temperature, catalysts, and biomass content in the feed significantly affected gas yields, while residence time was not significant.  相似文献   

18.
Ternary blends of PLA/PBS/CSW with different weight fractions were prepared using a vane extruder. The mechanical properties, morphology, crystallization behavior and thermal stability of the blends were investigated. For the PLA/CSW blend, the tensile strength decreased, the flexural strength and modulus increased compared with pure PLA. For PBS, the addition of CSW had little influence on the mechanical properties. For the ternary blends PLA/PBS/CSW, the tensile strength, flexural strength and modulus decreased compared with pure PLA, while the elongation at break and the impact strength increased significantly. The brittle-ductile transition of the blends took place when the PBS weight fraction reaching 30 wt%. As a soft component in the blends, PBS was beneficial to improve the tensile ductility and the toughness of PLA. SEM measurements reveal that PLA/PBS/CSW blends were immiscible. When the weight fraction of PBS was 50 wt%, significant phase separation was observed, and CSW had preferential location in the PBS phase of the blend. DSC measurement and POM observation reveal that CSW had a heterogeneous nucleation effect on PLA and PBS matrix. The addition of PBS improved the crystallization of PLA and the thermal resistance of the PLA/PBS/CSW blends significantly.  相似文献   

19.
Miscible blends of three crystalline polymers, namely poly(butylene succinate) (PBS), poly(ethylene succinate) (PES), and poly(oxyethylene) (POE), exhibited interpenetrating spherulites, where a spherulite of one component grows inside the spherulites of other components. PBS and PES were immiscible above the melting points, Tm, of these substances, while ternary blends with POE showed miscibility, which depended on the molecular weight of POE. PBS and PES exhibited the same spherulitic growth process as in a miscible binary blend when they were crystallized from a homogeneous ternary melt. Spherulites of PBS, which is the highest‐Tm component, filled the whole volume first when a miscible ternary blend was quenched below Tm of POE, the lowest‐Tm component. Then, the blends showed either two types of crystallization processes. One was successive nucleation and growth of PES and POE spherulites, that is, PES nucleated and developed spherulites inside the PBS spherulites and then POE spherulites grew inside the interlocked spherulites of PBS and PES. The other was simultaneous growth and the formation of interpenetrating spherulites of PES and POE inside the PBS spherulites. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 706–711, 2010  相似文献   

20.
Biodegradable poly(butylene succinate) (PBS)/poly(ethylene oxide) (PEO) polymer blend film with compositional gradient in the film thickness direction was prepared using a method of interdiffusion across the interface between the PBS and PEO layers at a temperature above the melting points of both the component polymers. The miscibility between PBS and PEO was confirmed by observation of the glass transition temperature by differential scanning calorimetry. The compositional gradient structure of PBS/PEO was characterized by microscopic mapping measurement of Fourier transform infrared spectra and dynamic mechanical thermal analysis. Furthermore, a new method for confirming the crystalline/crystalline compositional gradient structure through observing the crystallization behavior by POM (polarized optical microscopy) was put forward. A continuous gradient of the spherulite size along the film thickness direction was succeessfully generated in the PBS/PEO blend film. The compositional gradient blend was found to have significantly improved physical properties that cannot be realized for pure PBS, pure PEO, and even their homogeneous miscible blend system. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 368–377, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号