首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 683 毫秒
1.
In this paper we study the stabilization of plate vibrations by means of piezoelectric actuators. In this situation the geometric control condition of Bardos, Lebeau and Rauch [6] is not satisfied. We prove that we have exponential stability for the low frequencies but not for the high frequencies. We give an explicit decay rate for regular initial data at high frequencies while clarifying the behavior of the constant which intervenes in this estimation there function of the frequency of cut n. The method used is based on some trace regularity which reduces stability to some observability inequalities for the corresponding undamped problem. Moreover, we show numerically at low frequencies, that the optimal location of the actuator is the center of the domain Ω. Research supported by the RIP program of Oberwolfach Institut and by the Tunisian Ministry for Scientific Research and Technology (MRST) under Grant 02/UR/15-01. Research supported by the RIP program of Oberwolfach Institut. (Received: September 17, 2003; revised: February 26, 2004)  相似文献   

2.
We consider a pointwise stabilization problem for a model arising in the control of noise. We prove that we have exponential stability for the low frequencies but not for the high frequencies. Thus, we give an explicit polynomial decay estimation at high frequencies that is valid for regular initial data while clarifying that the behavior of the constant which intervenes in this estimation there, functions as the frequency of cut. We propose a numerical approximation of the model and study numerically the best location of the actuator at low frequencies.  相似文献   

3.
We consider some linear Schrödinger equation with variable coefficients associated to a smooth symmetric metric g which can be degenerate, without sign and such that g has a submatrix of fixed rank v which is uniformly nondegenerate. In this general setting we prove Strichartz estimates with a loss of derivative on the solution. We also discuss the problem of the control of high frequencies. In particular, we prove that if the equation preserves the H s norm for all s ≥ 0, then we obtain almost the same Strichartz estimates as those for the Schrödinger equation associated to a Riemannian metric of dimension 2d ? v.  相似文献   

4.
In this paper, we consider the Bresse‐Cattaneo system with a frictional damping term and prove some optimal decay results for the L2‐norm of the solution and its higher order derivatives. In fact, we show that there is a completely new stability number δ that controls the decay rate of the solution. To prove our results, we use the energy method in the Fourier space to build some very delicate Lyapunov functionals that give the desired results. We also prove the optimality of the results by using the eigenvalues expansion method. In addition, we show that for the absence of the frictional damping term, the solution of our problem does not decay at all. This result improves some early results  相似文献   

5.
Dündar  P.  Aytaç  A. 《Mathematical Notes》2004,76(5-6):665-672

Communication networks have been characterized by high levels of service reliability. Links cuts, node interruptions, software errors or hardware failures, and transmission failures at various points can interrupt service for long periods of time. In communication networks, greater degrees of stability or less vulnerability is required. The vulnerability of communication network measures the resistance of the network to the disruption of operation after the failure of certain stations or communication links. If we think of a graph G as modeling a network, many graph-theoretic parameters can be used to describe the stability of communication networks, including connectivity, integrity, and tenacity. We consider two graphs with the same connectivity, but with unequal orders of theirs largest components. Then these two graphs must be different in respect to stability. How can we measure that property? The idea behind the answer is the concept of integrity, which is different from connectivity. Total graphs constitute a large class of graphs. In this paper, we study the integrity of total graphs via some graph parameters.

  相似文献   

6.
In this paper, we consider a simple discrete two-neuron network model with three delays. The characteristic equation of the linearized system at the zero solution is a polynomial equation involving very high order terms. We derive some sufficient and necessary conditions on the asymptotic stability of the zero solution. Regarding the eigenvalues of connection matrix as the bifurcation parameters, we also consider the existence of three types of bifurcations: Fold bifurcations, Flip bifurcations, and Neimark–Sacker bifurcations. The stability and direction of these three kinds of bifurcations are studied by applying the normal form theory and the center manifold theorem. Our results are a very important generalization to the previous works in this field.  相似文献   

7.
In this paper we suggest a new discrete spectroscopy for analysis of random signals and fluctuations. This discrete spectroscopy is based on successful solution of the modified Prony’s problem for the strongly-correlated random sequences. As opposed to the general Prony’s problem where the set of frequencies is supposed to be unknown in the new approach suggested the distribution of the unknown frequencies can be found for the strongly-correlated random sequences. Preliminary information about the frequency distribution facilitates the calculations and attaches an additional stability in the presence of a noise. This spectroscopy uses only the informative-significant frequency band that helps to fit the given signal with high accuracy. It means that any random signal measured in t-domain can be “read” in terms of its amplitude-frequency response (AFR) without model assumptions related to the behavior of this signal in the frequency region. The method overcomes some essential drawbacks of the conventional Prony’s method and can be determined as the non-orthogonal amplitude frequency analysis of the smoothed sequences (NAFASS). In this paper we outline the basic principles of the NAFASS procedure and show its high potential possibilities based on analysis of some actual NIR data. The AFR obtained serves as a specific fingerprint and contains all necessary information which is sufficient for calibration and classification of the informative-significant band frequencies that the complex or nanoscopic system studied might have.  相似文献   

8.
We consider a linear viscoelastic problem and prove polynomial asymptotic stability of the steady state. This work improves previous works where it is proved that polynomial decay of solutions to the equilibrium state occurs provided that the relaxation function itself is polynomially decaying to zero. In this paper we will not assume any decay rate of the relaxation function. In case the kernel has some flat zones then we prove polynomial decay of solutions provided that these flat zones are not too big. If the kernel is strictly decreasing then there is no need for this assumption. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Expectation-Stock Dynamics in Multi-Agent Fisheries   总被引:1,自引:0,他引:1  
In this paper we consider a game-theoretic dynamic model describing the exploitation of a renewable resource. Our model is based on a Cournot oligopoly game where n profit-maximizing players harvest fish and sell their catch on m markets. We assume that the players do not know the law governing the reproduction of the resource. Instead they use an adaptive updating scheme to forecast the future fish stock. We analyze the resulting dynamical system which describes how the fish population and the forecasts (expectations) of the players evolve over time. We provide results on the existence and local stability of steady states. We consider the set of initial conditions which give non-negative trajectories converging to an equilibrium and illustrate how this set can be characterized. We show how such sets may change as some structural parameters of our model are varied and how these changes can be explained. This paper extends existing results in the literature by showing that they also hold in our two-dimensional framework. Moreover, by using analytical and numerical methods, we provide some new results on global dynamics which show that such sets of initial conditions can have complicated topological structures, a situation which may be particularly troublesome for policymakers.  相似文献   

10.
Banach frames and atomic decompositions are sequences that have basis-like properties but which need not be bases. In particular, they allow elements of a Banach space to be written as linear combinations of the frame or atomic decomposition elements in a stable manner. In this paper we prove several functional — analytic properties of these decompositions, and show how these properties apply to Gabor and wavelet systems. We first prove that frames and atomic decompositions are stable under small perturbations. This is inspired by corresponding classical perturbation results for bases, including the Paley — Wiener basis stability criteria and the perturbation theorem el kato. We introduce new and weaker conditions which ensure the desired stability. We then prove quality properties of atomic decompositions and consider some consequences for Hilbert frames. Finally, we demonstrate how our results apply in the practical case of Gabor systems in weighted L2 spaces. Such systems can form atomic decompositions for L2w(IR), but cannot form Hilbert frames but L2w(IR) unless the weight is trivial.  相似文献   

11.
A theorem of Mader states that highly connected subgraphs can be forced in finite graphs by assuming a high minimum degree. We extend this result to infinite graphs. Here, it is necessary to require not only high degree for the vertices but also high vertex‐degree (or multiplicity) for the ends of the graph, that is, a large number of disjoint rays in each end. We give a lower bound on the degree of vertices and the vertex‐degree of the ends which is quadratic in k, the connectedness of the desired subgraph. In fact, this is not far from best possible: we exhibit a family of graphs with a degree of order 2k at the vertices and a vertex‐degree of order k log k at the ends which have no k‐connected subgraphs. Furthermore, if in addition to the high degrees at the vertices, we only require high edge‐degree for the ends (which is defined as the maximum number of edge‐disjoint rays in an end), Mader's theorem does not extend to infinite graphs, not even to locally finite ones. We give a counterexample in this respect. But, assuming a lower bound of at least 2k for the edge‐degree at the ends and the degree at the vertices does suffice to ensure the existence (k + 1)‐edge‐connected subgraphs in arbitrary graphs. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 331–349, 2007  相似文献   

12.
In this note, we prove a simple fixed point theorem for a special class of complete metric spaces (namely, complete non-Archimedean metric spaces which are connected with some problems coming from quantum physics, p-adic strings and superstrings). We also show that this theorem is a very efficient and convenient tool for proving the Hyers–Ulam stability of a quite wide class of functional equations in a single variable.  相似文献   

13.
We consider the system of elastic waves in three dimensions under the presence of an impurity of the medium which we represent by a real-valued function q(x) (or q(x,t)). The medium is assumed to be isotropic and occupies the whole space Ω = ℝ3. We study the location of the scattering frequencies associated with such phenomenon. We conclude that there is a large region on the complex plane which is free of scattering frequencies. In the remaining region they are discrete provided that q satisfies suitable assumptions concerning its behaviour at infinity.  相似文献   

14.
We are concerned with the problem of finding the polynomial with minimal uniform norm on among all polynomials of degree at most n and normalized to be 1 at c. Here, is a given ellipse with both foci on the real axis and c is a given real point not contained in . Problems of this type arise in certain iterative matrix computations, and, in this context, it is generally believed and widely referenced that suitably normalized Chebyshev polynomials are optimal for such constrained approximation problems. In this work, we show that this is not true in general. Moreover, we derive sufficient conditions which guarantee that Chebyshev polynomials are optimal. Also, some numerical examples are presented.  相似文献   

15.
An obstacle in the use of Evans function theory for stability analysis of traveling waves occurs when the spectrum of the linearized operator about the wave accumulates at the imaginary axis, since the Evans function has in general been constructed only away from the essential spectrum. A notable case in which this difficulty occurs is in the stability analysis of viscous shock profiles. Here we prove a general theorem, the “gap lemma,” concerning the analytic continuation of the Evans function associated with the point spectrum of a traveling wave into the essential spectrum of the wave. This allows geometric stability theory to be applied in many cases where it could not be applied previously. We demonstrate the power of this method by analyzing the stability of certain undercompressive viscous shock waves. A necessary geometric condition for stability is determined in terms of the sign of a certain Melnikov integral of the associated viscous profile. This sign can easily be evaluated numerically. We also compute it analytically for solutions of several important classes of systems. In particular, we show for a wide class of systems that homoclinic (solitary) waves are linearly unstable, confirming these as the first known examples of unstable viscous shock waves. We also show that (strong) heteroclinic undercompressive waves are sometimes unstable. Similar stability conditions are also derived for Lax and overcompressive shocks and for n × n conservation laws, n ≥ 2. © 1998 John Wiley & Sons, Inc.  相似文献   

16.
The interest in the use of quasimodes, or almost frequencies and almost eigenfunctions, to describe asymptotics for low‐frequency and high‐frequency vibrations in certain singularly perturbed spectral problems, which depend on a small parameter ε, has been recently highlighted in many papers. In this paper we deal with the low frequencies for a Steklov‐type eigenvalue homogenization problem: we consider harmonic functions in a bounded domain of ?2, and strongly alternating boundary conditions of the Dirichlet and Steklov type on a part of the boundary. The spectral parameter appears in the boundary condition on small segments Tε of size O(ε) periodically distributed along the boundary; ε also measures the periodicity of the structure. We consider associated second‐order evolution problems on spaces of traces that depend on ε, and we provide estimates for the time t in which standing waves, constructed from quasimodes, approach their solutions uε(t) as ε→0. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Analysis of robust stability for a family (E( Δ ), A( Δ )) of linear differential‐algebraic equations (DAEs) depending on perturbations Δ ∈ Δ of some parameters is more difficult than for the classical ODE‐case where E(·) can be identified with In ∈ ℝn×n. We start with an electric circuit example for motivation. Then, after defining the class of parameterized DAEs we are dealing with we consider two kinds of stability radii: One concerns preservation of the structure for the perturbed system (including the algebraic index and dimension of the subspace belonging to the finite spectrum of (E(·), A(·))). The second cares for stability of the finite spectrum as known from the classical case. Both can be treated independently and their combination yields the stability radius of the family. From this, it is possible to derive characterizations of both stability radii which are based on the structured singular value (SSV). However, the upper bounds may be very conservative in the real perturbation case – thus we introduce a variational principle which also characterizes the stability radius and allows for the computation of better upper bounds in the real perturbation case. In combination with the SSV‐based method this yields quite small intervals for the stability radius to lie in. Finally, some numerical results for the electric circuit example are presented.  相似文献   

18.
In this paper, we study lattices of preradicals which are not small classes (in which case we say that the corresponding rings are p-large), and specially we consider some infinite representation type algebras. We construct an injective assignment between lattices of preradicals, using a full functor between the corresponding categories of modules, that satisfies certain conditions. We show that the polynomial ring over any field is p-large, and we use this fact to provide examples and some classes of algebras (both tame and wild) which are p-large.  相似文献   

19.
The stability results which comprise the Direct Method of Lyapunov involve the existence of auxiliary functions (Lyapunov functions) endowed with certain definiteness properties. Although the Direct Method is very general and powerful, it has some limitations: there are dynamical systems with known stability properties for which there do not exist Lyapunov functions which satisfy the hypotheses of a Lyapunov stability theorem.In the present paper we identify a scalar switched dynamical system whose equilibrium (at the origin) has known stability properties (e.g., uniform asymptotic stability) and we prove that there does not exist a Lyapunov function which satisfies any one of the Lyapunov stability theorems (e.g., the Lyapunov theorem for uniform asymptotic stability). Using this example as motivation, we establish stability results which eliminated some of the limitations of the Direct Method alluded to. These results involve time-averaged Lyapunov function derivatives (TALFD’s). We show that these results are amenable to the analysis of the same dynamical systems for which the Direct Method fails. Furthermore, and more importantly, we prove that the stability results involving TALFD’s are less conservative than the results which comprise the Direct Method (which henceforth, we refer to as the classical Lyapunov stability results).While we confine our presentation to continuous finite-dimensional dynamical systems, the results presented herein can readily be extended to arbitrary continuous dynamical systems defined on metric spaces. Furthermore, with appropriate modifications, stability results involving TALFD’s can be generalized to discontinuous dynamical systems (DDS).  相似文献   

20.
Summary We study the stability of Gabor frames with arbitrary sampling points in the time-frequency plane, in several aspects. We prove that a Gabor frame generated by a window function in the Segal algebra S0(Rd) remains a frame even if (possibly) all the sampling points undergo an arbitrary perturbation, as long as this is uniformly small. We give explicit stability bounds when the window function is nice enough, showing that the allowed perturbation depends only on the lower frame bound of the original family and some qualitative parameters of the window under consideration. For the perturbation of window functions we show that a Gabor frame generated by any window function with arbitrary sampling points remains a frame when the window function has a small perturbation in S0(Rd) sense. We also study the stability of dual frames, which is useful in practice but has not found much attention in the literature. We give some general results on this topic and explain consequences to Gabor frames.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号