首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degradation of poly(L-lactic acid) (PLLA) into a repolymerizable oligomer was carried out using a clay catalyst, montmorillonite K10 (MK10), with the objective of developing a chemical recycling process. PLLA having an Mw of 120,000 was degraded by MK10 in toluene at 100 degrees C for 6 h to produce the corresponding linear-type oligomers having a molecular weight of a few hundreds in a yield of greater than 90%. The oligomer was readily polymerized by a conventional chemical catalyst to give a high-molecular-weight PLLA. No isomerization of L-lactic acid occurred during the degradation process using MK10. The MK10 could be repeatedly used at least five times without any significant decrease in its activity. The degradation of PLLA was accelerated by the addition of a small amount of ethanol in toluene using anhydrous MK10 to produce oligomers with ethyl ester end groups.  相似文献   

2.
Enzymatic degradation and polymerization using an enzyme were analyzed with respect to the establishment of a sustainable chemical recycling system for poly(ε‐caprolactone) (PCL) which is a typical biodegradable synthetic plastic. As the typical example, the enzymatic degradation of PCL having an Mn of 110 000 using lipase CA in toluene containing water at 70°C for 6 h afforded a unimodal oligomer having an Mn of about 1 000 quantitatively consisting of linear and cyclic oligomers. This was again polymerized by lipase CA in toluene under restricted water concentration to produce PCL having an Mn of greater than 70 000.  相似文献   

3.
To obtain an effective compatibilizer for the blends of poly(L‐lactide) (PLLA) and poly(ε‐caprolactone) (PCL), the diblock copolymers PCL‐b‐PLLA with different ratios of PCL/PLLA (CL/LA) and different molecular weights (Mn) were synthesized by ring‐opening polymerization (ROP) of L‐lactide with monohydric poly(ε‐caprolactone) (PCL‐OH) as a macro‐initiator. These copolymers were melt blended with PLLA/PCL (80/20) blend at contents between 3.0 and 20 phr (parts per hundred resin), and the effects of added PCL‐b‐PLLA on the mechanical, morphological, rheological, and thermodynamic properties of the PLLA/PCL/PCL‐b‐PLLA blends were investigated. The compatibility between PLLA matrix and PCL phase was enhanced with decreasing in CL/LA ratios or increasing in Mn for the added PCL‐b‐PLLA. Moreover, the crystallinity of PLLA matrix increased because of the added compatibilizers. The PCL‐b‐PLLA with the ratio of CL/LA (50/50) and Mn ≥ 39.0 kg/mol were effective compatibilizers for PLLA/PCL blends. When the content of PCL‐b‐PLLA is greater than or equal to 5 phr, the elongations at break of the PLLA/PCL/PCL‐b‐PLLA blends all reached approximately 180%, about 25 times more than the pristine PLLA/PCL(80/20) blend.  相似文献   

4.
Poly(l-lactide) (PLLA) was melt-blended with poly(p-vinyl phenol) (PVPh) using a two-roll mill, and the miscibility between PLLA and PVPh and degradation of the blend films were investigated. It was found that PLLA/PVPh blend has miscibility in the amorphous state because only single Tg was observed in the DSC and DMA measurements. The Tg of the PLLA/PVPh blend could be controlled in the temperature range from 55 °C to 117 °C by changing the PVPh weight fraction. In alkaline solution, degradation rate of PLLA/PVPh blends was faster than that of neat PLLA because PVPh could dissolve in alkaline solution. The surface morphology of degraded PLLA and PLLA/PVPh blend were observed by SEM. The surface morphology of degraded PLLA/PVPh blend was finer than that of PLLA. Young's modulus of PLLA/PVPh blend increased with increasing PVPh content. Yield stress of PLLA/PVPh blends whose PVPh content was less than 30 wt% kept the level of about 55 MPa and that of PLLA/PVPh blend whose PVPh content was 40 wt% is much lower than that of neat PLLA.  相似文献   

5.
Porous poly(ε‐caprolactone) (PCL) films were prepared by the removal of poly(L ‐lactide) (PLLA) from phase‐separated PLLA/PCL blend films using the selective Proteinase K™‐catalyzed hydrolysis of PLLA and subsequent elution of its water‐soluble oligomers and monomer into the surrounding hydrolysis media. Polarimetry, gravimetry, and differential scanning calorimetry (DSC) confirmed the complete removal of PLLA molecules from the blend films within 5 d of the Proteinase K‐catalyzed hydrolysis and therefore the formation of porous PCL films when the initial PLLA content [XPLLA(0)(w/w) = PLLA/(PCL + PLLA)] of the blend films was in the range 0.3–0.5. The fragmentation of the blend film with XPLLA(0) = 0.7 occurred when the Proteinase K‐catalyzed hydrolysis was continued for longer than 5 d. These findings exhibited that both the PLLA‐rich and PCL‐rich phases were continuous in the blend films for XPLLA(0) ranges of 0.3–0.7 and of 0.3–0.5, respectively, and that the PCL‐rich phase became dispersed when XPLLA(0) was increased to 0.7. The dependence of enzymatic hydrolysis rate on XPLLA(0) strongly suggests that the Proteinase K‐catalyzed hydrolysis of the blend films occurs at the interfaces of PLLA‐rich and PCL‐rich phases as well as at the film surfaces.  相似文献   

6.
A new poly(butylene succinate) (PBS)‐grafted vapor grown carbon fiber (VGCF)/poly(L ‐lactide) (PLLA) nanocomposites were successfully prepared by an in situ condensation reaction between PBS (Mw = 6,000) and surface oxidized VGCF, followed by direct melt mixing technique, and their mechanical and thermal properties were evaluated. Fourier transform infrared spectroscopy and scanning electron microscopy studies indicate a chemical interaction between the PBS and the surface of VGCF. It was found that the maximum tensile strength and modulus of PBS‐grafted VGCF/PLLA nanocomposites were 135 MPa (27% increase relative to neat PLLA) and 4,400 MPa (29% increase relative to neat PLLA), respectively. The results indicate that significant improvement in the mechanical properties can be accomplished by optimizing the surface modification conditions for VGCF. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4433–4441, 2008  相似文献   

7.
A new surface modification method of hydroxyapatite nanoparticles (n‐HA) by surface grafting reaction of L ‐lactic acid oligomer with carboxyl terminal (LAc oligomer) in the absence of any catalyst was developed. The LAc oligomer with a certain molecular weight was directly synthesized by condensation of L ‐lactic acid. Surface‐modified HA nanoparticles (p‐HA) were attested by Fourier transformation infrared spectroscopy, 31P MAS‐NMR, and thermal gravimetric analysis (TGA). The results showed that LAc oligomer could be grafted onto the n‐HA surface by forming a Ca carboxylate bond. The grafting amount of LAc oligomer was about 13.3 wt %. The p‐HA/PLLA composites showed good mechanical properties and uniform microstructure. The tensile strength and modulus of the p‐HA/PLLA composite containing 15 wt % of p‐HA were 68.7 MPa and 2.1 GPa, respectively, while those of the n‐HA/PLLA composites were 43 MPa and 1.6 GPa, respectively. The p‐HA/PLLA composites had better thermal stability than n‐HA/PLLA composites and neat PLLA had, as determined by isothermal TGA. The hydrolytic degradation behavior of the composites in phosphate buffered saline (PBS, pH 7.4) was investigated. The p‐HA/PLLA composites lost their mechanical properties more slowly than did n‐HA/PLLA composites in PBS because of their reinforced adhesion between the HA filler and PLLA matrix. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5177–5185, 2005  相似文献   

8.

Abstract  

Thermal behavior, miscibility, and crystalline morphology in blends of low-molecular-weight poly(l-lactic acid) (LMw-PLLA) or high-molecular-weight PLLA (HMw-PLLA) with various polyesters such as poly(butylene adipate) (PBA), poly(ethylene adipate) (PEA), poly(trimethylene adipate) (PTA), or poly(ethylene succinate) (PESu), respectively, were explored using differential scanning calorimeter (DSC), and polarized-light optical microscopy (POM). Phase behavior in blends of PLLA with other polyesters has been intriguing and not straight forward. Using a low- and high molecular weight PLLA, this study aimed at mainly using thermal analyses for probing the phase behavior, phase diagrams, and temperature dependence of blends systems composed of PLLA of two different molecular weights (low and high) with a series of aliphatic polyesters of different structures varying in the (CH2/CO) ratio in main chains. The blends of LMw-PLLA/PEA and LMw-PLLA/PTA show miscibility in melt and amorphous glassy states. Meanwhile, the LMw-PLLA/PESu blend is immiscible with an asymmetry-shaped upper critical solution temperature (UCST) at 220–240 °C depending on the blend composition. In contrast to miscibility in LMw-PLLA/PTA and LMw-PLLA/PEA blends, HMw-PLLA with polyesters are mostly immiscible; and HMw-PLLA/PTA blend is the only one showing an asymmetry-shaped UCST phase diagram with clarity points at 195–235 °C (depending on composition). Reversibility of UCST behavior, with no chemical transreactions, in these blends was proven by solvent recasting, gel permeation chromatography, and Fourier transform infrared spectroscopy (FT-IR). Crystalline morphology behavior of the LMw-PLLA/PEA and LMw-PLLA/PTA blends furnishes addition evidence for miscibility in the amorphous phase between LMw-PLLA and PTA or PEA.  相似文献   

9.
Blending poly(butylene succinate) (PBS) with polylactide (PLLA) has proven effective in improving heat resistance of PLLA fibers. Unfortunately, it remains challenging to maintain good spinnability for PLLA/PBS blends with high content of PBS with which further improved heat resistance could be anticipated. In this study, reactive melt-extrusion was devised to in-situ generate PLLA-PBS copolymers by introducing zinc acetate as a transesterification catalyst into PLLA/PBS blends. The compatibility between the PLLA and PBS phases was greatly improved by the formation of PLLA-PBS copolymers, resulting in excellent melt-spinnability even for the PLLA/PBS blends with high PBS content up to 20 wt%. In addition, an increase in crystallinity of PLLA was achieved in PLLA/PBS blend fibers, thanks to the enhanced compatibility. More importantly, the presence of PBS nuclei retarded the molecular orientation of the amorphous PLLA phase, consistent with the effective results from the relaxation heat-setting treatment. These led to an exceptionally improved heat resistance of the PLLA/PBS blend fibers. As an encouraging result, the boiling water shrinkage was significantly reduced from ca. 20% for neat PLLA fibers to 3.7% for the PLLA/PBS blend fibers with 20 wt% PBS content. These findings may open up a facile and effective route to develop PLLA/PBS blend fibers showing sound spinnability, greatly improved heat resistance and softness.  相似文献   

10.
This paper describes experiments that investigate the use of low glass transition temperature (T g) latex particles consisting of oligomer to promote polymer diffusion in films formed from high molar mass polymer latex. The chemical composition of both polymers was similar. Fluorescence resonance energy transfer (FRET) was used to follow the rate of polymer diffusion for samples in which the high molar mass polymer was labeled with appropriate donor and acceptor dyes. In these latex blends, the presence of the oligomer (with M n = 24,000 g/mol, M w/M n = 2) was so effective at promoting the interdiffusion of the higher molar mass poly(butyl acrylate-co-methyl methacrylate; PBA/MMA = 1:1 by weight) polymer (with M n = 43,00 g/mol, M w/M n = 3) that a significant amount of interdiffusion occurred during film drying. Additional polymer diffusion occurred during film aging and annealing, and this effect could be described quantitatively in terms of free-volume theory. This paper is dedicated to Professor Haruma Kawaguchi to honor his many contributions to the field of latex particles and their applications.  相似文献   

11.
Iridium is one of the most important platinum group metals and is used in several alloys and in the automotive industry for the purposes of making catalysts. Therefore, its recycling is a very actual challenge for researchers working in the field of urban mining. Reactions of various tetrafluorobromates MBrF4 (M = K, Rb, Cs) and M’(BrF4)2 (M’ = Ba) with Ir metal have been investigated. Compositions of the obtained products have been determined, corresponding reaction schemes have been suggested, and proper conditions for the reactions have been established.  相似文献   

12.
The photodegradation of melt-crystallized and amorphous-made poly(l-lactide) (PLLA-C and PLLA-A, respectively) and cast-crystallized poly(?-caprolactone) (PCL) was investigated comprehensively for the periods up to 200 h using gel permeation chromatography, differential scanning calorimetry, tensile testing, and polarization optical microscopy. The photodegradation of PLLA and PCL films proceeds via a bulk erosion mechanism, indicating that UV penetrates the specimens with no significant reduction in its intensity, irrespective of the chemical structure and the crystallinity of biodegradable polyesters. The photodegradability of PCL chains was higher than that of PLLA chains. This strongly suggests that the chemical structure of the two sequential groups adjacent to the ester oxygen rather than the density of ester group is crucial to determine the photodegradability of biodegradable polyesters. Although PLLA chains are photodegradable even in the crystalline regions, their photodegradability is lower than that in the amorphous regions. The significant increase in weight-average molecular weight (Mw)/number-average molecular weight (Mn) was observed for PLLA-A and PCL films, even when the decrease in Mn by UV irradiation was small. Most of the tensile properties of PLLA and PCL films remained unchanged during UV irradiation, while solely the elongation at break of PCL film significantly decreased. This result reflects that among the tensile properties the elongation at break was most sensitive to the change in molecular characteristics of biodegradable polyesters by UV irradiation. The contrast between bright and dark parts of Maltese crosses remained unchanged for the spherulites in PLLA-C and PCL films even after UV irradiation for 200 h. This result exhibits that the cleaved fraction of the tie chains was too low to cause the traceable disorientation of lamellae.  相似文献   

13.
Alginate with the weight-average molecular weight (Mw) approximately 900 kDa and ratio of M (mannuronate)/G (guluronate) about 1.3 was irradiated by gamma Co-60 in aqueous solution at doses up to 200 kGy. The irradiation dose was shown to be a function for reducing Mw and molecular weight distribution of irradiated alginates. The distribution of oligomer fractions in irradiated products was also investigated by separation using ultrafiltration membranes. The irradiated alginate with Mw approximately 14.2 kDa was found to have a positive influence for growing of barley and soybean. The irradiated oligoalginate fraction with Mw ranging from 1 to 3 kDa displayed the strongest effect on the growth and development of the mentioned plants at low concentration (20 ppm). It is suggested that oligoalginate with Mw in the range 1–3 kDa is a trigger for the growth and development of plants.  相似文献   

14.
Films of poly(l-lactic acid) (PLLA) with different number-average molecular weights (Mn) and d-lactide unit contents (Xd) were made amorphous and the effects of molecular weight and small amounts of d-lactide units on the hydrolytic degradation behavior in phosphate-buffered solution at 37 °C of PLLA were investigated. The degraded films were investigated using gravimetry, gel permeation chromatography, polarimetry, differential scanning calorimetry, X-ray diffractometry, and tensile testing. To exclude the effects of crystallinity on the hydrolytic degradation, the films were made amorphous by melt-quenching. The incorporation of small amounts of d-lactide units drastically enhanced the hydrolytic degradation of PLLA. In the period of 0-32 weeks, the hydrolytic degradation rate constant (k) of PLLA films increased with increasing Xd, while the k values did not depend on Mn. This means that the effects of Xd on the hydrolytic degradation rate of the films are higher than those of Mn. In contrast, in the period of 32-60 weeks neither Xd nor Mn was a crucial parameter to determine k values, probably because in addition to these parameters the differences in the amount of catalytic oligomers accumulated in films and crystallinity affect the hydrolytic degradation behavior of the films. The initially amorphous PLLA films remained amorphous even after the hydrolytic degradation for 60 weeks.  相似文献   

15.
A new method of surface modification of TiO2 nanoparticles by surface-grafting l-lactic acid oligomer was developed. The surface-grafting reaction was evaluated by Fourier transformation infrared (FTIR) and thermal gravimetric analysis (TGA). The results showed that l-lactic acid oligomer could be easily grafted onto the TiO2 nanoparticles surface in the presence of stannous octanoate and the highest amount of grafted polymer was about 8.5% in weight. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) results showed that grafted TiO2 (g-TiO2) in chloroform or PLLA matrix approximated to uniform, while unmodified TiO2 nanoparticles tended to aggregate. The tensile strength of this material was greatly improved by the addition of g-TiO2 nanoparticles in poly(l-lactide) (PLLA) matrix. The tensile strength of the g-TiO2/PLLA nanocomposite containing 5 wt.% of g-TiO2 was 72 MPa, which was 23.1% higher than that of pure PLLA. Even though the incorporation of the TiO2 nanoparticles into PLLA led to the deterioration of its elongation at break, the g-TiO2/PLLA nanocomposite also exhibited better ductility than that of TiO2/PLLA nanocomposite.  相似文献   

16.
Using differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and Fourier transformed infrared spectroscopy (FTIR), upper critical solution temperature (UCST) phase behavior with immiscibility–miscibility transformation in blends of poly(ethylene succinate) (PESu) with poly(lactic acid)s (PLAs), such as poly(D ,L ‐lactic acid) (PDLLA), poly(L ‐lactic acid) (PLLA), poly(D ‐lactic acid) (PDLA), differing in D/L configurations and molecular weights were investigated. All three binary blends of PDLLA/PESu, PLLA/PESu, and PESu/PDLA exhibit UCST behavior, which means they are immiscible at ambient temperature but can become miscible upon heating to higher temperatures at 240–268 °C depending on molecular weights. The PLLAs/PESu blends at UCST could be reverted back to the original phase‐separated morphology, as proven by solvent redissolution. The blends upon quenching from above UCST could be frozen into a quasi‐miscible state, where the Flory‐Huggins interaction parameter (χ12) was determined to be a negative value (by melting point depression technique). The interaction between PDLLA and PESu in blend resulted in significant reduction in spherulite growth rate of PESu. Furthermore, blends of PESu with lower molecular weight PLLA or PDLA (Mw of PLLA and PDLA are 152,000 and 124,000 g/mol, respectively), instead of the higher Mw of PDLLA (Mw of PDLLA = 157,000 g/mol), are immiscible with UCST phase behavior, which are affected by molecular weights rather than the ratio of L/D monomer in the chemical structure of PLAs. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1135–1147, 2010  相似文献   

17.
PBS/nano-CaCO3 composites with various nano-CaCO3 weight fractions were prepared by melt blending. The thermal behavior, dynamic mechanical properties and rheological properties of the composites were investigated. DSC measurements revealed that the nano-CaCO3 particles had little influence on the crystallization and melting behavior of PBS. Thermogravimetric analysis showed that the introduction of nano-CaCO3 tended to improve the thermal stability of PBS. Dynamic mechanical analysis showed that the G′ and G″ of the PBS/nano-CaCO3 composites were improved significantly when the nano-CaCO3 content was not more than 3wt%, while the G′ and G″ were mainly decided by the PBS matrix when the nano-CaCO3 content exceeded 3wt%. Rheological results showed that G′ < G″ over the frequency range, illustrating the viscous behavior of the samples. The η* of all the samples remained almost constant when the frequency was not more than 0.25 rad/s, which showed the characteristic of a Newtonian fluid. A strong shear thinning effect was observed for all the samples when the frequency exceeded 0.25 rad/s. Furthermore, the microstructure and the relaxation mechanism of the PBS/nano-CaCO3 composites mainly depended on the PBS matrix.  相似文献   

18.
A novel polyurethane containing phosphorus and nitrogen (PU) was synthesized and characterized with 1H-NMR, FTIR, and GPC. It was served as flame retardant to blend with poly(L-lactide) (PLLA) through solution casting technique. PU particle dispersed in PLLA substrate irregularly and improved the crystallinity of PLLA. The initial decomposition temperature of PLLA composite was significantly lower, but char residue increased. Flame retardancy and mechanical properties of PU/PLLA blends were evaluated. When the blend ratio of PU/PLLA was 10 wt%, LOI was 26.8%, and UL94 test reached V-2 grade. The inflaming retarding mechanism was outlined. The tensile strength of PLLA blend was 42.8 MPa, while its elongation at break was only 2%. By adjusting PU and adding compatilizer, the balance between flame retardancy and good mechanical properties of PLLA would be controlled.  相似文献   

19.
Poly(l-lactide) (PLLA)/poly(d-lactide) (PDLA) blend specimens containing only stereocomplex as crystalline species, together with those of pure PLLA and PDLA specimens, were prepared by solution crystallization using acetonitrile as the solvent. Their accelerated hydrolytic degradation was carried out in phosphate-buffered solution at elevated temperatures of 70-97 °C up to the late stage. During hydrolytic degradation, the stereocomplex crystalline residues were first traced by gel permeation chromatography. Similar to the hydrolytic degradation of pure PLLA and PDLA specimens, the hydrolytic degradation of stereocomplexed PLLA/PDLA blend specimens slowed down at the late stage when most of the amorphous chains were removed and crystalline resides were formed and degraded. The estimated activation energy for hydrolytic degradation of stereocomplex crystalline residues (97.3 kJ mol−1) is significantly higher than 75.2 kJ mol−1 reported for α-form of PLLA crystalline residues. This indicates that the stereocomplex crystalline residues showed the higher hydrolysis resistance compared to that of α-form of PLLA crystalline residues.  相似文献   

20.
The objective of the study was to determine the effects of molecular sizes of amylose (AM) and starch granules on the mechanical properties of thermoplastic starch (TPS) blend films. Leached amylose solution from cassava (CS_ AM) and mung bean (MB_AM), and two forms of amylopectin (AP) (granular; g and non-granular; ng) of waxy cassava (WxCS) starch were used. Four types of film matrices were fabricated and all TPS blend films contained same amount of AM and glycerol. Results displayed that molecular weight profiles of starch films and presence of granule remnants significantly controlled the film matrix formation, types of crystal formation, and percent of relative crystallinity (%RC) (p < 0.05). Tensile property of TPS films was controlled by %RC and presence of granule remnants. Percent elongation at break (%Eb) of TPS films increased when the films had a large range of molecular weight distribution (from 5.5 × 107 g/mol to 0.4 × 105 g/mol) and contained a high weight fraction (~58%) of starch molecules with Mw~0.4 × 105 g/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号