首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Ferrihydrite (FH) nanoparticles were synthesised and subjected to γ-irradiation in the form of FH-ethanol suspension. The dose rate of γ-radiation was ~16 kGy/h and the samples were irradiated to doses of up to 2590 kGy. γ-irradiation of FH-ethanol suspensions did not cause the transformation of FH to any of the other iron oxide phases. Likewise, neither the Mössbauer and FT-IR spectroscopy nor the quantitative analysis using Energy Dispersive X-ray Spectroscopy gave any evidence of structural changes of FH upon γ-irradiation. C, H analysis showed that the C concentration in FH gradually increased with dose and was higher in γ-irradiated FH samples than in non-irradiated FH sample. This finding suggested that carbon in FH originated from ethanol degradation. The H concentration in FH gradually increased to the dose of up to 340 kGy and then slightly decreased. Magnetic measurements showed a progressive decrease in magnetisation with an increase in γ-irradiation. The results of magnetic measurements and C, H analysis suggested the carbonisation of FH surface. It was supposed that γ-irradiation of FH-ethanol suspension reductively decomposed ethanol thus generating unsaturated hydrocarbons and acetylides, which in turn formed a conjugate iron complex, thus carbonating the FH surface. The carbonisation of the FH surface prevented FH transformation to other iron oxide phases.  相似文献   

2.
Instead of conventional method such as thermal cross-linking method, γ-irradiation is used to improve the properties of polydimethylsiloxane (PDMS) as a matrix containing progesterone. The thermal cross-linking of PDMS monolithic systems containing drug is deleterious to the drug. Usually, all drugs are unstable both at high vulcanizing temperature and in the presence of peroxide catalysts. This novel method is found to be effective for the stability of the controlled drug delivery systems. The PDMS (three medical grades) matrices were exposed to γ-irradiation in ambient conditions with total doses of 50, 75 and 100 kGy. The mechanical properties confirmed that the samples are cross-linked. It is found that the progesterone release rate is affected by irradiation treatment. It is deduced, however that there is no significant difference in the release profile of progesterone by increasing the irradiation dose from 50 to 100 kGy.  相似文献   

3.
4.
The present study was conducted to evaluate the effect of irradiation temperature on the shelf stability and quality of Kimchi during storage at 35 °C for 30 days. Kimchi samples were N2-packaged and heated at 60 °C and then gamma irradiated at 20 kGy under various temperatures (room temperature, ice, dry ice, and liquid nitrogen). In the results of microbial, pH, and acidity analysis, combination treatment of heating and irradiation was able to sterilize microbes in Kimchi regardless of irradiation temperature. When Kimchi was irradiated under frozen temperatures, especially dry ice, the softening of texture and the deterioration of sensory quality of Kimchi were reduced. Also, ESR signal intensities were weakened due to the decrease of irradiation dose and temperature.  相似文献   

5.
The Taguchi method, a robust experimental design for optimization, was used for the synthesis of a superabsorbent hydrogel network using γ-rays as an initiator, energy source and crosslinker at the same time. Nine different samples of superabsorbent hydrogels were prepared in various conditions from kappa-carrageenan (κC) and acrylamide by γ-irradiation at room temperature. Considering the results of nine trials and according to analysis of variance (ANOVA), a new experimental condition with the concentrations of κC and acrylamide 1.5 g and 0.028 mol (2 g in total volume of 50 mL H2O), respectively, as well as γ-ray at the optimum total dose (7 kGy) was proposed. After preparing the desired hydrogels according to optimum condition, the swelling behavior of hydrogels in different media was investigated.  相似文献   

6.
The effect of capsaicin on the radiation stability of low density polyethylene was accomplished by applying the chemiluminescence procedure. The neat and modified polymer with 0.25% and 0.50% (w/w) capsaicin were exposed to γ-irradiation in air receiving 10, 20 and 30 kGy. The synergistic effect due to the presence of metallic selenium was demonstrated. The significant improvement in oxidation induction time was obtained demonstrating the efficient antioxidant activity of capsaicin in LDPE. The simultaneous protection action of metallic selenium in LDPE/capsaicin systems brought about a supplementary enhancement in the oxidation resistance of irradiated samples.  相似文献   

7.
A new superabsorbent hydrogel has been prepared from tragacanth and polyethylene oxide (PEO) by gamma radiation at room temperature. Tragacanth solutions with different concentrations (1%, 3% and 5%) have been blended with 5% aqueous solution of PEO at a ratio of 1:1 and irradiated at doses 5–20 kGy. The properties of the prepared composite hydrogels were evaluated in terms of the gel fraction and the swelling behavior. An unexpected growth of the gel fraction was observed in PEO/tragacanth hydrogels irradiated at 5 kGy. Incorporation of 5% tragacanth into the aqueous PEO increased significantly the swelling percent of the hydrogels to more than 14,000% and thus makes it a superabsorbent material.  相似文献   

8.
The effect of γ-irradiation (4 and 9 kGy) and packaging on the lipolytic and oxidative processes in lipid fraction of Bulgarian fermented salami during storage at 5 °C was evaluated (1st, 15th and 30th days). No significant differences were observed in the amounts of total lipids (TL), total phospholipids (TPL) and acid number (AN) within the vacuum packed samples of salami treated with 4 and 9 kGy during storage. The changes in thiobarbituric acid reactive substances (TBARS) depended mainly on the irradiation dose applied and did not exceed 1.37 mg/kg in all groups. The most intensive lipolytic and oxidative processes and the lowest sensory assessment were found in the non-packed irradiated (9 kGy) samples.  相似文献   

9.
The effect of γ-irradiation on mechanical, thermal, physicochemical and structural properties of polypropylene (PP) syringes was studied. Irradiation doses of 30, 60 and 120 kGy were used with non-irradiated PP syringes serving as control samples. Irradiation caused a significant deterioration in mechanical properties of samples. The compression strength of whole syringe body decreased with increasing irradiation dose. Similarly % extension at break decreased with increasing irradiation dose. Of the physicochemical properties tested, both degree of yellowness and extractable radiolysis products increased with increasing irradiation dose. Melting temperature as well as specific melting enthalpy decreased with increasing irradiation dose. Minor differences in FTIR spectra were observed, mainly in the region of 1720 cm−1, corresponding to the absorption of carbonyl compounds indicating the formation of increased amounts of oxidation products at high irradiation doses. Gas chromatography- mass spectroscopy analysis indicated the formation of a number of radiolysis compounds as a result of irradiation. The number and concentration of these compounds increase progressively with increasing dose until 60 kGy. At the same time a number of compounds initially present in non-irradiated syringes were destroyed by irradiation.  相似文献   

10.
The molecular–topological structure of polyamide before and after γ-irradiation has been first studied by thermomechanical spectrometry. The γ-irradiation with a dose up to 300 kGy does not change the topological structure of the polymer, the four-block pseudo-network structure of which contains crystalline segments of macromolecules and polyassociative entities of the cluster type in addition to low-and high-temperature amorphous blocks. During irradiation, only interblock mass transfer of the chain segments occurs, resulting in different dose-dependent values for the molecular weight of the chains, their weight fraction in each topological block, and the glass transition and molecular flow temperatures of the polymer. Radiothermoluminescence curves exhibit three maxima at 152, 200, and 330 K, of which the last one is detected in a temperature region close to the glass transition temperature of the high-temperature amorphous block on the thermomechanical analysis curve of the polymer.  相似文献   

11.
The mitigation of oxidative degradation under γ-irradiation promoted by eight commercial antioxidants: Ethanox 330, Hostanox O3, Irganox 1010, Topanol OC, Ionox 220, Santonox R, Santowhite, Cyanox 2246 loaded onto ethylene-propylene terpolymer at the concentration of 0.5 phr in respect of a pristine polymer was studied. The polymer samples were exposed to various doses up to 500 kGy. The kinetic parameters of oxidations: oxidation induction times, onset oxidation temperature, oxidation rates were evaluated by CL measurements. They validated the differences in the stabilisa-tion activities by limitation of the oxidation gradient. The high efficiency of some of the antioxidants studied, such as Ionox 220 and Santowhite, ensured the delay in degradation even at a high irradiation dose (500 kGy). For the environments with γ-radiation exposure, a relevant sequence in the increasing protection efficiency could be established: Topanol OC; Hostanox O3; Irganox 1010; Cyanox 2246; Santonox R; Ionox 220; Santowhite. The FT-IR spectra were recorded for the calculation of the radiochemical yields resulting from the modifications occuring in the concentrations of oxygenated structures. The accumulations of hydroxyl- and carbonyl-containing products were calculated to evaluate the irradiation effects in EPDM-based products during a severe accident. The options for EPDM stabilisation are discussed based on chemiluminescence and FTIR analyses.  相似文献   

12.
Biocompatible hydrogels based on poly(N-vinyl pyrrolidone) (PVP) were synthesized by electron beam irradiation of the dry polymer under various conditions. Sol–gel analysis of the bulk gel (in mm range) gave a dose of gelation of 94 kGy. As seen for various other polymers, the network density rises with the increase in dose. At around 350 kGy, PVP began to decompose. Based on these observations, films in μm range on a silicon wafer were synthesized by electron beam irradiation. Due to irradiation, the films adhered irreversibly on the wafer. Their swelling behavior was analyzed by ellipsometry.  相似文献   

13.
“Generalized modulus–ultimate elongation profile” was induced from the relationship between the modulus and the ultimate elongation of an elastomer that was quantitatively added crosslinking and scission. This profile can be used to evaluate the time-accelerated irradiation methods of ethylene-propylene-diene elastomer. The irradiation under low dose rate (0.33 kGy/h) at room temperature was the reference condition. The short-time irradiation condition was 4.2 kGy/h in 0.5 MPa oxygen at room temperature and 5.0 kGy/h in air at 70 °C. The former tended to bring about the higher ratio of scission than the reference condition; the latter tended to bring about the higher ratio of crosslinking.  相似文献   

14.

This paper presents the stabilization effects of inorganic filler, cerium-doped lead zirconate titanate on high-density polyethylene. The filler was loaded in two concentrations (1 and 3 wt%). The dopant contents in PbZrO3 were 0, 0.05, 0.075, 0.1 and 0.125 mol%. The degradation of hybrid samples was accomplished by γ-irradiation at various doses up to 200 kGy. The isothermal and nonisothermal chemiluminescence (CL) and thermal analysis (TG-DSC) were applied for the thermal stability characterization of modified HDPE samples. The mechanistic considerations and radiochemical consequences caused by the variation of filler concentration and doping level are discussed. The results demonstrate that the filler acts efficiently as stabilizer at low concentration of additive when the lower filler amount is present. The start of degradation precedes melting by four processes through which the chain scission and radical oxidation represent the essential degradation stage. The filler concentration influences the degradation due to the intimate interaction between solid-state defects and free radicals. The polymer protection against oxidation is based on the scavenging of radicals by the doping elements, that is, they trap and block radicals delaying material aging. The present results open a new perspective in the quality amelioration of organic products toward high durability.

  相似文献   

15.
Deswelling kinetics of water and terbinafine hydrochloride adsorbed poly(N-vinyl-2-pyrrolidone/itaconic acid) P(VP/IA) hydrogels were investigated. Hydrogels were prepared by irradiating the ternary mixture of VP/IA and cross-linking agent ethylene glycol dimethacrylate (EGDMA) in water by γ-rays at ambient temperature. Hydrogels swelled in pure water and terbinafine hydrochloride (TER-HCl) solutions at room temperature and deswelling or water loss were investigated between 4 and 45 °C temperature range and on human skin. The influence of IA content, % swelling, temperature and TER-HCl content on the water loss from gel matrix were investigated. Induction time for 80% water loss from hydrogel systems are found to increase from 9.6 to 21.2 h by increasing IA content in the gel system at 25 °C and decreased by 11 h with addition of TER-HCl in the gel system. Kinetic analyses had shown that the basic properties affecting the water loss behavior of these hydrogels are the IA and TER-HCl content and temperature of the medium.  相似文献   

16.
Gelatin, the low molecular weight collagen derivative from porcine skin was transformed into a stable permanent hydrogel by γ-radiation. A series of samples with 3% gelatin solution in water were irradiated at doses of 12, 25, 50, 100, 150, 200 kGy at room temperature in the absence of air with a dose rate of 2.2 kGy/h. At low dose gelatin hydrogels incorporating all the available water were obtained. At higher doses above 50 kGy, the gelatin hydrogel samples show a curious shrinking phenomenon due to the relatively high crosslinking density level achieved, so part of the available water is squeezed out from the gel cage. The gelatin hydrogel samples were studied by mass fractionation analysis, by spectrophotometric and polarimetric analysis. Further characterization was made by FT-IR spectroscopy and by thermal analysis (DSC, DTA and TGA) of the dried gelatin samples after irradiation in comparison to a reference untreated sample.  相似文献   

17.
In this study, a new electrically conducting nanosized Ag–PANI–silica complex, in which nano-silver is bound to silica and polyaniline (PANI), has been synthesized by using γ-irradiation at room temperature and not by using polyvinylpyrrolidone (PVP) as a colloidal stabilizer. The conductivity of nanosized Ag–PANI–silica complex was determined by using the Van der PauW method, and the complex turned out to have a high semi-conductivity (200 S/cm). The optical property and morphology were characterized by using a UV–vis spectrophotometer, field emission-scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The optical absorption bands of UV–vis analysis revealed a peak at 262, 368, and a slowly decreasing band at 600–800 nm originating from the a nanosized Ag–PANI–silica complex. FE-SEM and TEM showed that the nanosized Ag–PANI–silica complex has a particle size ranging from 10 to 30 nm and high stability. The nano-complex prepared by γ-irradiation can be applicable to be used as biosensor materials.  相似文献   

18.
The dependence of the yield of polymer and its molecular mass on the absorbed dose of γ-irradiation of a 0.8 M 2-acrylamido-2-methylpropanesulfonic acid aqueous solution was determined, as well as the gel fraction of the polymer produced. The feasibility of obtaining a crosslinked polymer via radiation polymerization of 2-acrylamido-2-methylpropanesulfonic acid in the presence of N,N′-methylenebisacrylamide admixtures was shown. It was found that the maximal degree of crosslinking is reached at a dose on the order of 20 kGy and the maximal water uptake (1150 g/g) is achieved at a dose of 1.25 kGy.  相似文献   

19.
The next generation High Temperature Low Sag Polymer Core Composite Conductors can experience harsh in-service environments including high temperature and highly concentrated ozone. In some extreme cases, it is possible that the conductors will experience temperatures of up to 180 °C and ozone concentrations as high as 1% (10,000 ppm). Therefore, the goal of this work was to understand the degradation mechanisms in a high temperature epoxy, which could be used in the conductors at temperatures as high as 140 °C in the presence of 1% ozone. Then, the combined aging data for the epoxy were compared to the aging results from room temperature aging in 1% ozone and aging in air at 140 and 180 °C. In addition, important but limited aging testing was also performed on a set of PCCC rods to verify some of the observations from the neat resin experiments. It was determined that the mass loss, volumetric shrinkage, and flexural strength reductions of the epoxy aged at 140 °C were driven almost entirely by temperature and that the effect of 1% ozone at that temperature can be thought of as insignificant for aging times up to 90 days. The composite rods displayed postcuring at 140 °C and were also unaffected by the presence of ozone at aging time lengths of 90 days. Up to this time aging the polymer and composite specimens in atmospheric 180 °C resulted in the most drastic changes in both physical and mechanical properties, except viscoelasticity where the polymer specimens aged at 140 °C with 1% ozone showed the greatest increase in the storage modulus. The least amount of degradation to the materials was found to occur after aging at room temperature in 1% ozone.  相似文献   

20.
The methods for producing reference test materials for biodegradation evaluation tests have been studied. Mechanical crushing at low temperature of polymer pellets using dry ice was selected for the method of producing polymer powder of poly(lactic acid) (PLA). The powders were fractionated using 60 mesh (250 μm) and 120 mesh (125 μm) sieves. The size distributions were then measured. The average diameter of the PLA particles obtained by this method was 214.2 μm. The biodegradation speeds of these PLA polymer powders were evaluated by two methods based on the international standard and one in vitro method based on the enzymatic degradation. First, the degree of biodegradation for this PLA powder was 91% for 35 days in a controlled compost determined by a method based on ISO 14855-1 (JIS K6953) at 58 °C managed by the Mitsui Chemical Analysis and Consulting Service, Inc. (Japan). Second, these polymer powders were measured for biodegradation by the Microbial Oxidative Degradation Analyzer (MODA) in a controlled compost at 58 °C and 70 °C based on ISO/DIS 14855-2 under many conditions. The degree of biodegradation for this PLA powder was approximately 80% for 50 days. In addition, the polymer powders were biodegraded by Proteinase K which is a PLA degradation enzyme. This polymer powder was suitable as a reference material for the evaluation methods of biodegradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号