首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of semi-aromatic poly(imide-ester)s were prepared by the direct polycondensation of N-(4-carboxyphenyl) trimellitimide or N-(3-carboxyphenyl) trimellitimide with various pyromellitic diimide diols containing methylene spacer = 2–6, respectively. The effect of the amount of LiCl, pyridine, and the kinds of condensation agents on the direct polycondensation were studied. The structures and thermal properties of the synthesized poly(imide-ester)s were examined by FTIR spectrum, wide-angle x-ray diffraction (WAXD), differential scanning calorimetry (DSC), thermal optical polarized microscopic observation, and thermogravimetric analysis (TGA). It is found that P1 series [derived from N-(4-carboxyphenyl) trimellitimide] with even number methylene spacer (n = 4, 6) exhibit smectic mesophase, but P2 series [derived from N-(3-carboxyphenyl) trimellitimide] do not show LC phase. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
A series of novel poly(ester-imide)s were prepared by the reaction of meta- and para-substituted trimellitimide dicarboxylic diacid chlorides with various diols containing four, five, six, seven, eight, nine, 10, and 12 methylene groups by a solution polymerization technique utilizing refluxing 1,2,4-trichlorobenzene as a solvent. The poly(ester-imide)s were characterized by dilute solution viscosity, infrared spectroscopy, differential scanning calorimetry, and polarized light microscopy. The inherent viscosities of the meta-substituted poly(ester-imide)s ranged from 0.06 to 0.25 dL/g while those of the para-substituted poly(ester-imide)s ranged from 0.10 to 0.65 dL/g and were obviously of higher molecular weight. The meta series were amorphous and showed no mesophase formation. All para-substituted poly(ester-imide)s exhibited monotropic mesophase identified as smectic A order. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
Novel liquid crystalline copoly(ester imide)s were synthesized via polyesterification of triethyleneglycol bis(4-carboxyphenyl) ether ( 1e ), diacetoxybiphenyl, and diacids with imide moieties. The effects of composition on the changes of Tg, Tm, and Ti were examined by global TSC and DSC. Thermal gravimetric analyses (TGA) found that 4a–d and 5a–g possess higher thermal stability. Strong stir opalescence phenomenon and observations from polarized optical microscopy identified that 2b–e and 3a–d possess the typical schlieren texture of an enantiotropic nematic mesophase. The birefrigent melts of 4a–d and 5a–g, however, displayed particular liquid crystalline behavior. Copolymers with higher aromatic imide ring content ( 4a–d, 5a–g ) form a layered structure and an enantiotropic smectic mesophase in the melting state. The melt viscosity of the semetic mesophase was higher than the nematic mesophase which was observed by capillary rheometer. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1791–1803, 1998  相似文献   

4.
A series of novel, fully aromatic high-molecular-weight poly(amide-ester)s was prepared by the direct polycondensation from terephthalic acid (TPA) and 2,6-naphthalene dicarboxlic acid (NDC) with various aromatic diols and diamines in the presence of diphenyl chlorophosphate (DPCP), LiCl, and pyridine. The structures and thermal properties of these synthesized poly(amide-ester)s were examined by FTIR, wide-angle x-ray diffraction (WAXD), differential scanning calorimetry (DSC), thermal polarized optical microscope, thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA). The effects of the kinds of the aromatic diols and diamines (bisphenyl units, naphthalene, and (un)substituted phenylene structures) on the thermal properties of the synthesized poly(amide-ester)s were investigated in this study. Strong interchain interactions were induced by using a 50:50 molar ratio of the amide groups to the ester groups, and, thus, no LC properties but good thermal stabilities were found in all of the synthesized poly(amide-ester)s containing naphthalene, substituted hydroquinone, or bisphenol segments in this study. However, another series of poly(amide-ester)s with a molar ratio of diamine to diol of 20:80 exhibited excellent mesophase stabilities, with various molar ratio of terephthalic acid (TPA) to 2,6-naphthalene dicarboxlic acid (NDC). © 1996 John Wiley & Sons, Inc.  相似文献   

5.
Starting from commercial S- or R-3-bromo-2-methylpropanol, several new spacer diols were prepared. These spacers were polycondensed with the acid chloride of N-(4′-carboxyphenyl)trimellitimide. The resulting poly(ester-imide)s were characterized by elemental analyses, viscosity measurements, 1H-NMR spectroscopy, DSC- and WAXD-measurements and optical microscopy. The poly(ester-imide)s derived from chiral, aliphatic spacers form layer structures in the solid state, but no liquid crystalline phase. With nonsymmetrical, nonchiral semialiphatic spacers, poly(ester-imide)s were obtained, which form a smectic E or H phase in the solid state, a smectic-A or -C phase in the melt, and a nematic phase, when the spacer possesses an odd number of CH2 groups. The polycondensation of a chiral semialiphatic spacer yielded thermotropic poly(ester-imide)s with either S- or R-configuration. WAXD patterns measured with synchrotron radiation at various temperatures proved that a layer structure exists in the solid state (smectic-E* or H*) and a chiral smectic-A* or -C* phase plus a cholesteric phase in the melt. A 1 : 1 blend of the S- and R-polyesters was also studied, but did not show unusual features. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
Four series of copoly(ester-imide)s (co-PEIs) were prepared by transesterification of poly(ethylene terephthalate), PET, with N-(4-carboxyphenyl)trimellitimide and an acetylated diphenol. Methylhydroquinone, tert. butylhydroquinone, phenylhydroquinone, and 2,7-dihydroxynaphthalene were used as diphenols. The chemical structures of these co-PEIs were characterized by chemical analyses, 1H-, and 13C-NMR spectra. A low degree of crystallinity was observed when the PET content was above 85% mol %. Between 60 and 80 mol % PET all co-PEIs are biphasic, whereas below 60 mol % the co-PEIs form a homogeneous nematic melt and below the glass transition temperature (Tg) a nematic glass. The Tgs vary continously with the molar composition but the mechanical properties drop sharply when the nematic phase changes to an isotropic one. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1813–1820, 1998  相似文献   

7.
A new homologous series of thermotropic liquid crystalline poly(azomethine-ether)s was synthesized by solution polycondensation of various diformyl-alpha,omega-diphenoxyalkanes, I-VIII with 2,5-bis(m-aminobenzylidene)cyclopentanone, XI and 2,6-bis(m-aminobenzylidene)cyclohexanone, XII. The inherent viscosities of the polymers were in the range 0.34-0.75 dI g-1. The mesomorphic properties were studied as a function of the diphenoxyalkane spacer length. Analyses by DSC and optical polarized microscopy demonstrated that the poly(azomethine-ether)s form nematic mesophases over wide temperature ranges. The poly(azomethine-ether)s based on the cyclohexanone moiety had better thermal stabilities than the corresponding poly(azomethine-ether)s based on cyclopentanone.  相似文献   

8.
A series of fully aromatic, thermotropic homopolyesters, derived from 3,4′-benzophenone dicarboxylic acid and various aromatic diols, was prepared by the melt polycondensation method and examined for thermotropic behavior by a variety of experimental techniques. The aromatic diols used in the study were hydroquinone, 2,6-, 1,4-, 1,5-, 2,3-, and 2,7-naphthalenediol isomers. All of the homopolyesters of 3,4′-benzophenone dicarboxylic acid with aromatic diols (except that with 2,7-naphthalenediol) formed a nematic LC phase in the melt. They had the glass transition temperatures (Tg) in the range of 133–164°C, the melting transitions (Tm) in the range 305–360°C and the high thermal stabilities (Td) in the range of 410–483°C. The 2,6-naphthalenediol based homopolymer had the highest Tm (360°C) and the 2,3-naphthalenediol based homopolymer had the lowest Tm (305°C) among all of the homopolymers of naphthalenediol isomers. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
A novel phosphorus–nitrogen thermotropic liquid crystalline poly(ester‐imide) (PN‐TLCP) derived from p‐acetoxybenzoic acid (ABA), terephthalic acid (TPA), acetylated 2‐(6‐oxide‐6H‐dibenz<c,e><1,2>oxa phosphorin‐ 6‐yl)‐1,4‐dihydroxy phenylene (DOPO‐AHQ) and N,N'‐hexane‐1,6‐diylbis(trimellitimide) was prepared by melt transesterification. The chemical structure, the mesophase behavior, and the thermal properties of the copolymer were investigated with Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H NMR), elemental analysis, wide‐angle X‐ray diffraction (WAXD), hot‐stage polarized light microscopy (PLM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). PN‐TLCP exhibited a nematic mesophase with a strong birefringence at a low and broad mesomorphic temperature ranging from 220 to 350°C, an initial flow temperature as low as about 190°C and a glass transition temperature of about 160°C. PN‐TLCP has also good thermal stability, high char residues and excellent flame retardancy (limiting oxygen index, LOI = 71 and UL‐94 V‐0 rating). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Fifteen highly regular hydrogen‐bonded, novel thermotropic, aromatic‐aliphatic poly(ester–amide)s (PEAs) were synthesized from aliphatic amido diols by melt polycondensation with dimethyl terephthalate and solution polycondensation with terephthaloyl chloride. Intermolecular hydrogen bonds more or less perpendicular to the main‐chain direction induce the formation and stabilization of liquid crystalline property for these PEAs. The structure of these polymers, even in the mesomorphic phase is dominated by hydrogen bonds between the amide–amide and amide–ester groups in adjacent chains. Aliphatic amido diols were synthesized by the aminolysis of γ‐butyrolactone, δ‐valerolactone and ε‐caprolactone with aliphatic diamines containing a number of methylene groups from two to six in isopropanol medium at room temperature. Effects of polarity of the solvent on solution polymerization and effect of catalyst on trans esterification were studied. These polymers were characterized by elemental analysis, FTIR, 1H NMR, 13C NMR, solubility studies, inherent viscosity, DSC, X‐ray diffraction, polarized light microscopy, and TGA. All the melt/solution polycondensed PEAs showed multiple‐phase transitions on heating with second transitions identified as nematic/smectic/spherullitic texture. The mesomorphic properties were studied as a function of their chemical structure by changing alternatively m or n. Odd‐even effect on mesophase transition temperature, isotropization temperature, and crystallinity were studied. The effect of molecular weight and polydispersity on mesophase/isotropization temperature and thermal stability were investigated. It was observed that there exists a competition for crystallinity and liquid crystallinity in these PEAs © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2469–2486, 2000  相似文献   

11.
Two series of novel thermotropic liquid crystalline poly(imide-carbonate)s were prepared by melt polycondensation from various arylene or alkylene bis(phenylcarbonate)s by using N,N′-bis(hydroxyethyl)pyromellitimide and N,N′-bis(hydroxypropyl)pyromellitimide as monomers. Thermotropic liquid crystalline properties were characterized by a polarizing microscope with a heating stage and a differential scanning calorimeter (DSC). Nematic melts were found for the synthesized aromatic poly(imide-carbonate)s. In order to investigate whether the pyromellitimide unit could be used as a mesogenic unit for preparing LC polymers, a series of aliphatic poly(imide-carbonate)s was prepared in this study. However, no significant LC textures were found under the observation by polarizing microscope. It was suggested that the aspect ratio of the pyromellitimide unit was too short to form liquid crystalline poly(imide-carbonate)s. In addition, it was interesting that the aliphatic poly(imide-carbonate)s with a longer spacer (n = 3) in the pyromellitimide unit showed better crystallinity. Thermostabilities of all synthesized poly(imide-carbonate)s were measured by thermogravimetric analysis (TGA). © 1994 John Wiley & Sons, Inc.  相似文献   

12.
Alkyl substitution in a series of main chain, liquid crystal polyesters strongly depressed their glass temperatures, melting points, clearing points, and mesophase thermal stabilities. Polymers with pendant n-alkyl substituents eight carbon atoms or longer did not form a liquid crystal phase.  相似文献   

13.
Two series of difunctional proton acceptors, stilbazole derivatives 4a – c and 6a – c with different spacers, oligo(methylene) and oligo(ethylene glycol), respectively, were synthesized. Hydrogen‐bonded polymeric complexes 4 / 7 and 6 / 7 and trimeric complexes 4 / 82 and 6 / 82 ( 7 and 8 are aromatic dicarboxylic acids and monocarboxylic acids, respectively) were prepared, and their liquid crystallinity was examined. The effects of the spacer in 4 , 6 , and 7 and the terminal group in 8 on the thermal behaviors of hydrogen‐bonded complexes were investigated using differential scanning calorimetry and polarizing optical microscopy. X‐ray diffraction at elevated temperatures was used to verify liquid crystal phases. The study showed that the phase transition temperatures for isotropic to nematic (TI–Ns) of polymeric complexes 4 / 7 and 6 / 7 in general decreased with the increase in length of spacer in the corresponding proton donors 7 . The increase in length of the proton acceptors 6 led to a drop of TI–Ns of the corresponding complexes 6 / 7 ; however, the TI–Ns of complexes 4 / 7 did not show any correlation with the spacer length in 4 . In contrast, the increase in length of the terminal group in 8 resulted in a slight decrease in TI–Ns of trimeric complexes 4 / 82 , but had a negligible effect on the TI–Ns of 6 / 82 because of the presence of the more flexible spacer in the proton acceptors 6 . © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4731–4743, 2005  相似文献   

14.
Three series of novel thermotropic liquid crystalline polyurethane elastomers (TLCPUEs) were studied. Hard segments were formed by using hexamethylene diisocyanate (HDI) reacted with a mesogenic unit, benzene-1,4-di(4-iminophenoxy-n-hexanol), which also acted as a chain extender. Three diols: 1,10-decanediol,poly(oxytetramethylene) glycol (PTMEG) M n = 1000 and PTMEG M n = 2000 were used as the soft segments. The effects of soft segments of polyurethanes on the liquid crystalline behavior were studied. Higher molecular weight TLCPUEs were obtained by adding 30?50 mol % of mesogenic segments to diisocyanates. In contrast to a conventional chain extender such as 1,2-ethylene glycol or 1,4-butyl glycol, the synthesized polyurethane elastomers exhibited a mesophase transition by using a mesogenic unit as the chain extender. Mesophase was found for all synthesized LC polyurethanes except of polymers H2-A-12 and H2-A-7. The structures and the thermal properties of all synthesized TLCPUEs were studied by using FTIR spectroscopy, wide-angle x-ray diffraction (WAXD) and DSC measurements, a polarizing microscope equipped with a heating stage, dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA). Mechanical properties were also examined by using a tensilemeter. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
A series of main chain photoactive liquid crystalline polyethers, containing rigid bisbenzylidene photoactive mesogen and flexible methylene spacers, were synthesized by polycondensation of bisbenzylidene diols and dibromoalkanes. The polyethers were characterized with 1H NMR, gel permeation chromatography (GPC), differential scanning calorimeter (DSC), thermo gravimetric analyzer (TGA), and polarized light optical microscopy. The individual and combined effects of spacer length and number of methoxy substituents on mesogenic and photoactive properties were investigated. Both first order and second order transition temperatures decreased with increased spacer length and the number of substituents. The combined effect of spacers and substituents drastically reduced the transition temperatures. All monomers and polymers showed mainly the smectic mesophase. In a few cases, nematic droplets along with the smectic phase were observed. The width of the liquid crystalline phase reduced with an increasing number of methoxy substituents on mesogenic unit. Variation of spacer length has a negligible effect on photocycloaddition. However, steric hinderance caused by the substituents decreased the photoactivity as the number of substituents increased. Total energies of crosslinked dimers calculated from modeling studies supported the above findings. Intermolecular photocycloaddition was also confirmed by photoviscosity measurement. The refractive index change was found to be in the range of 0.017–0.031. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2143–2155, 2009  相似文献   

16.
A series of chiral copoly(ester-imide)s was prepared by polycondensation of N-(4-carboxy-phenyl)trimellitimide with mixtures of isosorbide and phenylhydroquinone. All copolyesters are non-crystalline. They form a cholesteric melt, when containing more than 50 mol-% of phenyl-hydroquinone. Containing 5 or 10 mol-% of isosorbide a “Grand-Jean” texture is detected above 300°C and 350°C, respectively.  相似文献   

17.
Nylon 6 was reacted with trimellitic anhydride (TMA) at 230 °C so that a complete degradation to N‐(5‐carboxy‐pentamethylene) trimellitimide was obtained. The crude imide dicarboxylic acid was reacted in situ with 4,4′‐bisacetoxy biphenyl whereby an enantiotropic smectic polyesterimide was obtained. Analogous degradation and polycondensation reactions were also performed with nylon 11 and nylon 12. Parallel syntheses were conducted with isolated imide dicarboxylic acids. Furthermore, the crude imide dicarboxylic acid obtained from nylons 6, 11, and 12 were polycondensed in situ with diacetates of hydroquinone or substituted hydroquinone in combination with various amounts of acetoxy benzoic acid or 6‐acetoxy‐2‐naphthoic acid. In this way enantiotropic nematic copoly(ester‐imide)s were prepared. The phase transition of all LC‐poly(ester‐imide)s were characterized by DSC measurement and optical microscopy. In addition, a series of isotropic poly(ester‐imides)s was prepared using nonmesogenic bisphenols, such as bisphenol A, as comonomers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1630–1638, 2000  相似文献   

18.
Three series of novel thermotropic liquid crystalline polyester elastomers (TLCPEEs) were prepared by direct polycondensation from terephthalic acid, polyols (Mn = 1000 or 2000), and various diols. The structures and thermal properties of the synthesized TLCPEEs were examined by FTIR spectroscopy, differential scanning calorimetry, thermal optical polarized microscopy, thermogravimetric analysis, and wide-angle x-ray diffraction. The effects of kinds and amount of diols and the molecular weight of polyols on the thermal properties of TLCPEEs were studied. By introducing long flexible spacers (PE-1000 or PE-2000) into the polymer main chain, all polymers showed two-phase morphology under the thermal optical microscopic observation. All of the synthesized polymers, except polymer P1-BPA60 and P2-BPA60, which were prepared from BPA, exhibited thermotropic liquid crystalline properties that were in the smectic phase. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
Two series of monomers, 4-[4-(allyloxy)benzoyloxy]phenyl-3-(perfluoro-n-alkyl)ethyl propanoates and 2-(perfluoro-n-alkyl)ethyl-4-[4-(undec-10-en-1-oyloxy)-benzoyloxy] benzoates have been synthesised. These compounds contain a fluorinated chain obtained from 2-(perfluoro-n-alkyl)ethanol or from 2-(perfluoro-n-alkyl)ethyliodide, and an aliphatic chain containing a double bond attached to a mesogenic moiety. Their hydrosilylation with polymethylhydrogenosiloxane gives the corresponding polysiloxanes with a spacer with three or ten methylene units. These new fluorinated compounds are characterized by a combination of techniques consisting of differential scanning calorimetry (DSC) and thermal optical polarized microscopy. All the monomers exhibited smectogenic properties of type A but for the monomers with a long spacer between the unsaturated function and the mesogenic core (compounds B), the mesophase range decreases dramatically. All of the corresponding polysiloxanes exhibited a liquid crystalline behaviour over a wide temperature range. The influence of the fluorinated chain lengthening leads for the monomers and the polymers to an increasing of the transition temperatures. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4487–4496, 1999  相似文献   

20.
A series of novel tetrad high aspect ratio mesogenic diol monomers 4-{[4-(n-hydroxyalkoxy)-phenylimino]-methyl}-benzoic acid 4-{[4-(n-hydroxyalkoxy)-phenylimino]-methyl}-phenyl ester were prepared with varying alkoxy spacer length (n=2,4,6,8,10) by reacting 4-formylbenzoic acid 4-formylphenyl ester and 4-(n-hydroxyalkoxy) anilines. Two series of thermotropic main chain liquid crystalline unsegmented polyurethanes (PUs) were obtained by the polyaddition of the mesogenic diols with hexamethylene diisocyanate (HMDI) and methylene bis(cyclohexylisocyanate) (H12MDI) in dimethylformamide respectively. The effect of the incorporation of a third component namely polyol on the liquid crystalline properties of the polyurethanes was also studied. Linear segmented PUs were synthesised by a two-step block copolymerisation method. The PUs synthesised were based on six spacer mesogenic diol chain extender, soft segments poly(tetramethylene oxide)glycol (PTMG) (Mn= 650,1000,2000) and polycaprolactone diol (PCL) (Mn=530,1250,2000) of varying molecular weights and different diisocyanates including HMDI, H12MDI and methylene bis(phenylene isocyanate) (MDI). Structural elucidation was carried out by elemental analysis, fourier transform infra red (FT-IR), nuclear magnetic resonance (1H NMR and 13C NMR) spectroscopy. Inherent viscosity of the unsegmented polymers measured in methanesulphonic acid at 26°C was in the range of 0.13 - 0.65 dL/g while the molecular weights and molecular weight distribution of the segmented polyruethanes was determined using gel permeation chromatography (GPC). Mesomorphic properties were studied by differential scanning calorimetry (DSC) and hot stage polarising optical microscopy and the thermal stability was determined by thermogravimetric(TG)analysis. The monomeric diols and the polyurethanes exhibited nematic texture and good mesophase stability. It was observed that the partial replacement of the mesogenic diol by the polyol of varying molecular weights influenced the phase transitions and the occurrence of mesophase textures. The phase transition temperatures of the investigated polyurethanes showed dependence on the chain length of the soft segment and on the content of the mesogen moiety. A higher content of mesogenic moiety was needed to obtain liquid crystalline property when the soft segment length was increased as observed in the case of PTMG. Grained and threaded textures were observed depending on the molecular weight of the soft segment, the mesogen content and the diisocyanate. The stress-strain analyses showed that the polymers bused on high molecular weight PTMG soft segment have elastomeric property while the PCL based PUs displayed no elastomeric property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号