首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The non-isothermal crystallization behavior of poly(trimethylene terephthalate) (PTT) and its blends with a liquid crystalline polymer, namely Vectra A950 (VA), was studied by differential scanning calorimetry. The values of the half-time of crystallization, t 0.5 and the parameter F(T) in the combined Avrami and Ozawa equation indicated that VA can enhance the PTT crystallization rate by acting as a nucleating agent. The crystallization activation energy of the PTT phase increased with increasing VA content. The blends were immiscible, as can be inferred from their morphology. Thermogravimetric analysis of the blends revealed improved thermal stability by the incorporation of VA.  相似文献   

2.
Binary blends of poly(ethylene terephtalate) (PET) and thermotropic liquid crystal polyester (TLCP) have been prepared by both solution and melt blending methods. The TLCPs utilized were Vectra (Hoechst Celanese), TR-4, a TLCP synthesized in our laboratory, and a block copolymer consisting of three TR-4 units followed by three PET units. The phase behavior of the blends was studied by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and optical microscopy. The results show that none of the blends is miscible, but significant interactions exist between the PET phase and the TLCP phase in the case of TR-4 and TR-4 block copolymer blends. These interactions lead to a different nucleation mechanism in these blends compared to that in PET/Vectra.  相似文献   

3.
Journal of Thermal Analysis and Calorimetry - The morphology, isothermal crystallization and melting behaviour of melt-mixed nylon 6,6/Vectra A950 liquid crystalline polymer (LCP) blends were...  相似文献   

4.
In situ composites based on poly(ethylene 2,6-naphthalate) (PEN) and a thermotropic liquid crystal polymer (Vectra A950) were prepared by melt blending under different processing conditions. Thermal behaviour, mechanical and physical properties and morphology of the blends were investigated. The DSC analysis indicates that, as expected, Vectra enhances the crystallization process of PEN. Moreover, mechanical and thermal tests evidence the significant role of 20 wt% Vectra on increasing the material performances; tensile properties, coupled with SEM, show that strength and modulus of PEN are significantly improved when Vectra domains are long and continuous fibrils. The overall results can be attributed to the compatibilisation of the system induced by the mixing conditions that affect the extent of transreactions occurring in the melt. To deepen this aspect, the soluble and insoluble fractions in a PEN solvent were isolated and thoroughly characterized: both the fractions contain PEN/Vectra copolymers. The results underline the potentiality of the PEN/Vectra system for different high-performance applications requiring superior strength and modulus, heat stability or barrier properties.  相似文献   

5.
A calorimetric study of blends of poly(ethylene terephthalate-co-p-oxybenzoate), PET/PHB, with poly(butylene terephthalate), PBT has been carried out in the form of as-spun and drawn fibres. DSC melting and crystallization results show that PBT is compatible with LCP and the crystallization of PBT decreases by the addition of LCP in the matrix. The crystallization behaviour of blend fibres is investigated as a function of temperature of crystallization. A detailed analysis of the crystallization course has been made utilizing the Avrami expression. The isothermal calorimetric measurements provide evidence of decrease of rate of crystallization of PBT on addition of the liquid crystalline component up to about 50% by weight. The values of the Avrami exponents change in the temperature range from 200° to 215°C. Dimensionality changes in crystallization could be due to LCP mesophase-transition.  相似文献   

6.
用差示扫描量热法对聚对苯二甲酸乙二酯(PET)/热致液晶高分子(LCP)共混体系的等温和非等温结晶行为进行了研究.结果表明,由于液晶组分的加入,共混体系中PET的结晶速率和结晶度均得到提高.说明LCP具有PET结晶成核剂的作用.在较低的LCP组分含量下(~2wt%),这一效果最为明显,说明LCP是以很小的微区或某些LCP分子链介晶微束的形式对PET的结晶起成核剂的作用.  相似文献   

7.
Blends of polyarylate of bisphenol A, PAr, with two commercial main chain liquid crystalline polymers, Vectra A950 and Vectra B950, are studied. From dynamic viscoelastic measurements it is deduced that both systems (PAr/Vectra A950 and PAr/Vectra B950) are immiscible and scanning electron microscopy (SEM) micrographs show the presence of spherical domains of the liquid crystalline polymer when PAr constitutes the matrix. Extrusion capillary measurements reveal that, under conditions of temperature and shear rate similar to those of processing, the viscosity is reduced to approximately 10% of its value when the content of liquid crystalline polymer is only 20%. This great improvement of the rheological properties is observed in both PAr/Vectra A950 and PAr/Vectra B950 blends. The effect of draw ratio on Young's modulus for different compositions is also analyzed, pointing out the reinforcing action of both liquid crystalline polymers on polyarylate: for instance, 20% of Vectra B950 in the blend gives rise to a 700% increase of the modulus of fibres prepared at a draw ratio of 50. SEM of the extrudates reveals that the spherical domains are elongated at the entrance of the capillary giving rise to a microfibrillar morphology which is related to the excellent rheological and mechanical properties of the blends.  相似文献   

8.
The melt-crystallization and isothermal melt-crystallization kinetics of poly(ethylene terephthalate)/poly(trimethylene terephthalate) blends (PET/PTT) were investigated by differential scanning calorimetry (DSC) and polarized optical microscopy. Although PET and PTT in the binary blends are miscible at amorphous state, they will crystallize individually when cooled from the melt. In the DSC measurements, PET component with higher supercooling degree will crystallize first, and then the crystallite of PET will be the nucleating agent for PTT, which induce the crystallization of PTT at higher temperature. On the other hand, in both blends of PET80/PTT20 and PET60/PTT40, the PET component will crystallize at higher temperature with faster crystallization rate due to the dilute effect of PTT. So the commingled minor addition of one component to another helps to improve the crystallization of the blends. For blends of PET20/PTT80 and PET40/PTT60, isothermal crystallization kinetics evaluated in terms of the Avrami equation suggest different crystallization mechanisms occurred. The more PET content in blends, the fast crystallization rate is. The Avrami exponent, n = 3, suggests a three-dimensional growth of the crystals in both blends, which is further demonstrated by the spherulites formed in all blends. The crystalline blends show multiple-melting peaks during heating process.  相似文献   

9.
采用DSC方法研究了聚对苯二甲酸乙二酯 (PET)和热致性液晶共聚酯 6 0PHB PET (LCP)体系在少量扩链剂双 (2 唑啉 ) (BOZ)存在下形成的反应性共混物的非等温结晶动力学 .结果表明反应性共混物的Avrami指数均在 3 0~ 4 5之间 ,BOZ的加入使反应共混物中PET组分的结晶速率降低 ;表明BOZ对酯交换的促进作用 ,使所生成的共聚酯中PET嵌段的数均序列长度变短 ,而使结晶在某种程度上较为困难 ,但对体系的成核和结晶生长机理无明显影响 .结果还表明 ,随冷却速率的增大结晶峰向低温方向移动  相似文献   

10.
通过原子转移自由基聚合合成了线形及三臂聚苯乙烯-b-聚2(5)-乙烯基对(间)苯二甲酸二钠嵌段共聚物,通过凝胶渗透色谱、核磁共振和热失重表征证实得到了结构明确、分散度较窄的嵌段共聚物成核剂.采用熔融共混的方法制得聚对苯二甲酸乙二酯(PET)与成核剂共混样品.采用差示扫描量热仪与一维X射线衍射仪研究了PET及添加成核剂后...  相似文献   

11.
The sequence structure and thermal behavior of reactive blends of poly(ethylene terephthalate) (PET) with the liquid crystalline copolyester 60 PHB/PET containing 60 mol % of p-hydroxybenzoic acid (PHB) with addition of bis(2-oxazoline) (BOZ) were studied in detail. 1H NMR results indicate that both the number average sequence length of PET and PHB segments (L PET and L PHB) decrease with increasing mixing time and temperature via transesterification between PET and LCP. The transesterification is promoted in the presence of BOZ. As a consequence, the sequence structure and in turn the crystallization both from the glassy and the melt state and the melting behavior are markedly affected.  相似文献   

12.
邱兆斌 《高分子科学》2014,32(9):1139-1148
Poly(vinylidene fluoride) (PVDF) and poly(butylene succinate-co-24 mol% hexamethylene succinate) (PBHS), both crystalline polymers, formed melt-miscible crystalline/crystalline polymer blends. Both the characteristic diffraction peaks and nonisothermal melt crystallization peak of each component were found in the blends, indicating that PVDF and PBHS crystallized separately. The crystalline morphology and crystallization kinetics of each component were studied under different crystallization conditions for the PVDF/PBHS blends. Both the spherulitic growth rates and overall isothermal melt crystallization rates of blended PVDF decreased with increasing the PBHS composition and were lower than those of neat PVDF, when the crystallization temperature was above the melting point of PBHS component. The crystallization mechanism of neat and blended PVDF remained unchanged, despite changes of blend composition and crystallization temperature. The crystallization kinetics and crystalline morphology of neat and blended PBHS were further studied, when the crystallization temperature was below the melting point of PBHS component. Relative to neat PBHS, the overall crystallization rates of the blended PBHS first increased and then decreased with increasing the PVDF content in the blends, indicating that the preexisting PVDF crystals may show different effects on the nucleation and crystal growth of PBHS component in the crystalline/crystalline polymer blends.  相似文献   

13.
The influence of low contents of a liquid crystalline polymer on the crystallization and melting behavior of isotactic polypropylene (iPP) was investigated using electron and optical microscopy, differential scanning calorimetry, and X-ray diffraction. In pure iPP, the α modification was found, whereas for iPP/Vectra blends at Vectra concentration <5%, both α and β forms were observed. The amount of β phase varied from 0.23 to 0.16. Optical microscopy showed that Vectra was able to nucleate both α and β forms. Non-isothermal crystallization produces a material with a strong tendency for recrystallization of the α and β forms (αα′ and ββ′ recrystallization) leading to double endotherms for both crystalline forms in DSC thermograms. Melting thermograms after isothermal crystallization at low temperatures showed a similar behavior. At values of Tc > 119 °C for the α form and Tc > 125 °C for the β form, only one melting endotherm was observed because enough perfect crystals, not susceptible to recrystallization, were obtained. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1949–1959, 2004  相似文献   

14.
Poly(vinylidene fluoride) (PVDF) and poly(butylene succinate-co-butylene adipate) (PBSA) are crystalline/crystalline polymer blends with PVDF being the high-T(m) component and PBSA being the low-T(m) component, respectively. PVDF/PBSA blends are miscible as shown by the decrease of crystallization peak temperature and melting point temperature of each component with increasing the other component content and the homogeneous melt. The low-T(m) component PBSA presents various confined crystalline morphologies due to the presence of the high-T(m) component PVDF crystals by changing blend composition and crystallization conditions in the blends. There are mainly three different types of crystalline morphologies for PBSA in its miscible blends with PVDF. First, crystallization of PBSA commenced in the interspherulitic regions of the PVDF spherulites and continued to develop inside them in the case of PVDF-rich blends under two-step crystallization conditions. Second, PBSA spherulites appeared first in the left space after the complete crystallization of PVDF, contacted and penetrated the PVDF spherulites by forming interpenetrated spherulites in the case of PVDF-poor blends under two-step crystallization condition. Third, PBSA spherulites nucleated and continued to grow inside the PVDF spherulites that had already filled the whole space during the quenching process in the case of PBSA-rich blends under one-step crystallization condition. The conditions of forming the various crystalline morphologies were discussed.  相似文献   

15.
The thermal properties of solution-prepared blends of poly(butylene terephthalate) (PBT) and liquid crystalline poly(biphenyl-4,4′-ylene sebacate) (PB8) have been studied by differential scanning calorimetry (DSC). The smectic-to-isotropic (s → i) transition of the mesomorphic component is observed at temperatures slightly increasing with the PB8 content, in the 270–280°C range; on cooling, the mesophase formation (i → s transition) takes place at temperatures that decrease markedly with decreasing PB8 content. The temperatures of the crystal-to-smectic and smectic-to-crystal transitions of PB8 are almost invariant with blend composition. The melting and crystallization temperatures of the PBT phase decrease on increasing the content of the liquid crystalline component. These results, together with those of isothermal calorimetry of both the crystallization of the PBT component and the mesophase formation of the PB8 component of the blends, indicate that the two polymers are not immiscible in the isotropic state. In this latter state, however, the two polyesters undergo transesterification, which can be followed through changes in the DSC scans. The effect of the thermal history on the properties of the blends has been studied with particular attention. Both the dynamic and the isothermal calorimetric measurements provide evidence of an increase of the degree of crystallinity of PBT on addition of the liquid crystalline component up to about 35–50% by weight.  相似文献   

16.
The morphological structure and crystallization behavior of in situ poly(ethylene terephthalate) (PET)/isotactic polypropylene (iPP) microparts prepared through micro‐injection molding are investigated using a polarized light microscope, differential scanning calorimeter, scanning electron microscope, and two‐dimensional wide‐angle X‐ray. Results indicate that both the shear effect and addition of PET fibers greatly influence the morphologies of the iPP matrix. Typical “skin‐core” and oriented crystalline structures (shish‐kebab) may simultaneously be observed in neat iPP and iPP/PET microparts. The presence of PET phases reveals significant nucleation ability for iPP crystallization. High concentrations of PET phases, especially long PET fibers, correspond to rapid crystallization of the iPP matrix. The occurrence of PET microfibrils decreases the content and size of β‐crystals; by contrast, the orientation degree of β‐crystals increases with increasing PET content in the microparts. This result suggests that the existence of the microfibrillar network can retain the ordered clusters and promote the development of oriented crystalline structures to some extent. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
通过熔融共混的方式,将实验室自行设计合成的三元共聚热致液晶聚酯酰亚胺(PPDI)与聚对苯二甲酸乙二酯(PET)进行共混,制备一系列不同液晶聚合物含量的共混体系.采用示差扫描量热仪(DSC)、广角X-射线衍射仪(WAXD)和动态力学性能分析仪(DMA)对共混体系的结构与性能进行表征.结果表明,共混体系中两组份之间具有良好...  相似文献   

18.
The spherulite morphology and crystallization behavior of poly(ethylene terephthalate) (PET)/poly(trimethylene terephthalate) (PTT) blends were investigated with optical microscopy (OM), small-angle light scattering (SALS), and small-angle X-ray scattering (SAXS). The thermal analysis showed that PET and PTT were miscible in the melt over the entire composition range. The rejected distance of non-crystallizable species, which was represented in terms of the parameter δ, played an important role in determining the morphological patterns of the blends at a specific crystallization temperature regime. The parameter δ could be controlled by variation of the composition, the crystallization temperature, and the level of transesterification. In the case of two-step crystallization, the crystallization of PTT commenced in the interspherulitic region between the grown PET crystals and proceeded until the interspherulitic space was filled with PTT crystals. The spherulitic surface of the PET crystals acted as nucleation sites where PTT preferentially crystallized, leading to the formation of non-spherulitic crystalline texture. The SALS results suggested that the growth pattern of the PET crystals was significantly changed by the presence of the PTT molecules. The lamellar morphology parameters were evaluated by a one-dimensional correlation function analysis. The blends that crystallized above the melting point of PTT showed a larger amorphous layer thickness than the pure PET, indicating that the non-crystallizable PTT component might be incorporated into the interlamellar region of the PET crystals. With an increased level of transesterification, the exclusion of non-crystallizable species from the lamellar stacks was favorable due to the lower crystal growth rates. As a result, the amorphous layer thickness of the PET crystals decreased as the annealing time in the melt state was increased.  相似文献   

19.
PA6/PET共混体系的X射线衍射分析   总被引:2,自引:0,他引:2  
用宽角X射线衍射分析,考察尼龙6/PET共混体系的结晶态,表明在共混物中尼龙6和PET是各自结晶的,即晶相分离的。研究了结晶条件,组份比等对晶态结构的影响,发现共混体系相对结晶度低于纯组份的算术加和,说明共混体系的结晶相分离过程中,由于存在相互作用导致的干扰,使结晶度下降。  相似文献   

20.
In this study, sodium benzoate was selected as the nucleating agent to improve the crystallization rate of Poly (Ethylene Terephthalate) (PET). A new polyester, PEAT, which was systhesized from Bis Hydroxy-Ethyl Terephthalate (BHET) and adipic acid, was blended with PET to improve the (crystallization) rate of PET at lower temperatures. The crystallization rate of the PET blends was measured with a DSC and the kinetics of crystallization were studied. It was found that the range of the crystallization temperatures for the PET/sodium benzoate blends was wider than that for the PET/PEAT blends which shifted to a lower temperature region. PEAT showed a pronounced effect on the crystallization rate at lower temperatures, while sodium benzoate effected the crystallization rate within the entire range of crystallization temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号