首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Polymerization of vinyl chloride (VC) with titanium complexes containing Ti‐OPh bond in combination with methylaluminoxane (MAO) catalysts was investigated. Among the titanium complexes examined, Cp*Ti(OPh)3/MAO catalyst (Cp*; pentamethylcyclopentadienyl, Ph; C6H5) gave the highest activity for the polymerization of VC, but the polymerization rate was slow. From the kinetic study on the polymerization of VC with Cp*Ti(OPh)3/MAO catalyst, the relationship between the Mn of the polymer and the polymer yields gave a straight line, and the line passed through the origin. The Mw/Mn values of the polymer gradually decrease as a function of polymer yields, but the Mw/Mn values were somewhat broad. This may be explained by a slow initiation in the polymerization of VC with Cp*Ti(OPh)3/MAO catalyst. The results obtained in this study demonstrate that the molecular weight control of the polymers is possible in the polymerization of VC with the Cp*Ti(OPh)3/MAO catalyst. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3872–3876, 2007  相似文献   

2.
非茂催化剂对烯烃聚合显示出优异的催化特性,是继ziegler—Natta催化剂及茂金属催化剂之后的新一代烯烃聚合催化剂^[1],其中非环戊二烯基配体有含氮化合物[2-8]和含氧化合物^[9-15]等,这些非茂配合物可催化乙烯或丙烯聚合.将金属中心与一个环戊二烯基和一个非环戊二烯基配体而  相似文献   

3.
Binuclear complexes for olefin polymerization have attracted great attention due to their unique catalytic properties compared with their mononuclear counterparts. Here a series of p-phenylene-bridgedbis-β-carbonylenamine ligands and their binuclear Ti complexes Ti 2 L 1 – Ti 2 L 3 were prepared and characterized by 1H NMR, 13C NMR, Fourier transform infrared spectroscopy, and elemental analysis. The binuclear complex Ti 2 L 3 bearing an octylthio sidearm was further investigated by single-crystalX-ray diffraction, which revealed that the ligand was of β-imino enol form, with one titanium atom ligated with six other atoms, forming a deformed octahedral configuration. Furthermore, the ligand in Ti 2 L 3 adopted a cis configuration, which was different from the trans configuration of its m-phenylene-bridged derivatives. These binuclear complexes ( Ti 2 L 1 – Ti 2 L 3 ) could catalyze ethylene polymerization and copolymerization with 1,5-hexadiene(1,5-HD) efficiently under modified methylaluminoxane activation. Compared with the mononuclear complex TiL 5 , the binuclear catalysts were thermally more stable and showed higher activity for ethylene polymerization at higher temperatures. The activity of these titanium complexes for the copolymerization of ethylene with 1,5-HD were over 106 g/mol Ti.h.atm, almost twice as high as for homopolymerization. Compared with the mononuclear analogue TiL 5 and the m-substituted binuclear derivative Ti 2 L 4 , binuclear catalyst Ti 2 L 2 showed higher activity and insertion rate of the comonomer. The activity of Ti 2 L 2 was two to three times higher than that of TiL 5 and Ti 2 L 4 , indicating that p-substituted binuclear catalysts generate clear bimetallic synergistic effect for the copolymerization of ethylene and 1,5-HD. Meanwhile, 1,5-HD takes 1,3-cyclopentyl form in the polymer by 1,3-insertion. The copolymer prepared by binuclear catalysts had higher molecular weight and wider molecular weight distribution than that prepared by the mononuclear catalyst.  相似文献   

4.
Poly(ethylene‐co‐propylene) macromonomer (EPM) was synthesized in a high‐temperature continuous stirred tank reactor (CSTR) with [C5Me4(SiMe2NtBu)]TiMe2 (CGC‐Ti) as the catalyst system. PE samples with EPM long chain branching (LCB) were produced by semi‐batch copolymerization of ethylene and EPM with CGC‐Ti. The LCB frequencies were up to 21.8 EPM side chains per PE backbone. The effects of temperature and ethylene pressure on the degree of EPM grafting and catalyst activity were examined.

Incorporation of EPM into a growing PE chain forming an LCB polymer.  相似文献   


5.
A polymer-supported Ziegler–Natta catalyst, polystyrene-TiCl4AlEt2Cl (PS–TiCl4AlEt2Cl), was synthesized by reaction of polystyrene–TiCl4 complex (PS–TiCl4) with AlEt2Cl. This catalyst showed the same, or lightly greater catalytic activity to the unsupported Ziegler–Natta catalyst for polymerization of isoprene. It also has much greater storability, and can be reused and regenerated. Its overall catalytic yield for isoprene polymerization is ca. 20 kg polyisoprene/gTi. The polymerization rate depends on catalyst titanium concentration, mole ratio of Al/Ti, monomer concentration, and temperature. The kinetic equation of this polymerization is: Rp = k[M]0.30[Ti]0.41[Al]1.28, and the apparent activation energy ΔEact = 14.5 kJ/Mol, and the frequency factor Ap = 33 L/(mol s). The mechanism of the isoprene polymerization catalyzed by the polymer-supported catalyst is also described. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
A novel enantiopure salen ligand bearing a diphenylphosphine oxide on the 3-position of one aromatic ring was synthesized and combined with Ti(Oi-Pr)4 as a monometallic bifunctional catalyst for asymmetric cyanosilylation reaction of aldehydes with trimethylsilyl cyanide (TMSCN). The catalyst system exhibited excellent activity and moderate enantioselectivity. The addition of TMSCN to 4-nitrobenzaldehyde in the presence of 1 mol% catalyst loading could complete within 10 min at ambient temperature. An intramolecularly cooperative catalysis was observed in this system wherein the central metal Ti(IV) is suggested to play a role of Lewis acid to activate aldehydes while the appended diphenylphosphine oxide worked as Lewis base to activate TMSCN.  相似文献   

7.
A series of mono‐, bis‐, and tris(phenoxy)–titanium(IV) chlorides of the type [Cp*Ti(2‐R? PhO)nCl3?n] (n=1–3; Cp*=pentamethylcyclopentadienyl) was prepared, in which R=Me, iPr, tBu, and Ph. The formation of each mono‐, bis‐, and tris(2‐alkyl‐/arylphenoxy) series was authenticated by structural studies on representative examples of the phenyl series including [Cp*Ti(2‐Ph? PhO)Cl2] ( 1 PhCl2 ), [Cp*Ti(2‐Ph? PhO)2Cl] ( 2 PhCl ), and [Cp*Ti(2‐Ph? PhO)3] ( 3 Ph ). The metal‐coordination geometry of each compound is best described as pseudotetrahedral with the Cp* ring and the 2‐Ph? PhO and chloride ligands occupying three leg positions in a piano‐stool geometry. The mean Ti? O distances, observed with an increasing number of 2‐Ph? PhO groups, are 1.784(3), 1.802(4), and 1.799(3) Å for 1 PhCl2 , 2 PhCl , and 3 Ph , respectively. All four alkyl/aryl series with Me, iPr, tBu, and Ph substituents were tested for ethylene homopolymerization after activation with Ph3C+[B(C6F5)4]? and modified methyaluminoxane (7% aluminum in isopar E; mMAO‐7) at 140 °C. The phenyl series showed much higher catalytic activity, which ranged from 43.2 and 65.4 kg (mmol of Ti?h)?1, than the Me, iPr, and tBu series (19.2 and 36.6 kg (mmol of Ti?h)?1). Among the phenyl series, the bis(phenoxide) complex of 2 PhCl showed the highest activity of 65.4 kg (mmol of Ti?h)?1. Therefore, the catalyst precursors of the phenyl series were examined by treating them with a variety of alkylating reagents, such as trimethylaluminum (TMA), triisobutylaluminum (TIBA), and methylaluminoxane (MAO). In all cases, 2 PhCl produced the most catalytically active alkylated species, [Cp*Ti(2‐Ph? PhO)MeCl]. This enhancement was further supported by DFT calculations based on the simplified model with TMA.  相似文献   

8.
Polymer-supported Ziegler–Natta catalysts based on various polymer carriers were synthesized by different methods, including (1) loading TiCl4 directly onto the polymer supports; (2) loading TiCl4 onto the polymer supports modified by magnesium chloride (MgCl2); (3) loading TiCl4 onto the polymer supports modified by Grignard reagent (RMgCl); and (4) loading TiCl4 onto the polymer supports modified by magnesium alkyls (MgR2). The activity and kinetic features of the catalysts for ethylene polymerization were examined. Among the combinations tested, the best was found to be TiCl4/n-Bu2Mg.Et3Al/poly(ethylene-co-acrylic acid) (92:8), which produced a catalyst of very high activity for ethylene polymerization. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
Olefin polymerizations catalyzed by Cp′TiCl2(O‐2,6‐iPr2C6H3) ( 1 – 5 ; Cp′ = cyclopentadienyl group), RuCl2(ethylene)(pybox) { 7 ; pybox = 2,6‐bis[(4S)‐4‐isopropyl‐2‐oxazolin‐2‐yl]pyridine}, and FeCl2(pybox) ( 8 ) were investigated in the presence of a cocatalyst. The Cp*TiCl2(O‐2,6‐iPr2C6H3) ( 5 )–methylaluminoxane (MAO) catalyst exhibited remarkable catalytic activity for both ethylene and 1‐hexene polymerizations, and the effect of the substituents on the cyclopentadienyl group was an important factor for the catalytic activity. A high level of 1‐hexene incorporation and a lower rE · rH value with 5 than with [Me2Si(C5Me4)(NtBu)]TiCl2 ( 6 ) were obtained, despite the rather wide bond angle of Cp Ti O (120.5°) of 5 compared with the bond angle of Cp Ti N of 6 (107.6°). The 7 –MAO catalyst exhibited moderate catalytic activity for ethylene homopolymerization and ethylene/1‐hexene copolymerization, and the resultant copolymer incorporated 1‐hexene. The 8 –MAO catalyst also exhibited activity for ethylene polymerization, and an attempted ethylene/1‐hexene copolymerization gave linear polyethylene. The efficient polymerization of a norbornene macromonomer bearing a ring‐opened poly(norbornene) substituent was accomplished by ringopening metathesis polymerization with the well‐defined Mo(CHCMe2Ph)(N‐2,6‐iPr2C6H3)[OCMe(CF3)2]2 ( 10 ). The key step for the macromonomer synthesis was the exclusive end‐capping of the ring‐opened poly(norbornene) with p‐Me3SiOC6H4CHO, and the use of 10 was effective for this polymerization proceeding with complete conversion. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4613–4626, 2000  相似文献   

10.
A binuclear titanium complex Ti2La with methylene-bridged salicylaldiminato tridentate [ONS] ligand bearing octylthio sidearm was synthesized and used for the copolymerization of ethylene and norbornene (E-NB). The complex exhibited activity over 106 g/mol(Ti).h.atm and high degree incorporation of co-monomer (up to 49.9 mol %), affording high-molecular-weight copolymers with narrow molecular weight distribution. The E-NB copolymers produced by Ti2La/MMAO contained NN dyad and NNN triad sequences even at low norbornene feeds, in contrast to the observation of such sequences only at high level of NB incorporation for most other catalyst systems. The monomer reactivity ratios were calculated to be rE = 14.62 and rN = 0.08, of which the rN value was much larger than that from non-metallocene titanium catalyst systems. The catalytic performances of the binuclear complex Ti2La and its mononuclear analogue TiLb were also compared, with the binuclear complex exhibiting higher catalytic activity and NB incorporation ratio due to the binuclear cooperative effect, and producing much higher molecular weight copolymer due to the increased steric hindrance caused by close proximity of two growing chains. To the best of our knowledge, this is one of the few examples of binuclear catalyst for E-NB copolymerization with high activity and efficient incorporation of norbornene.  相似文献   

11.
Active center determinations on different Ziegler–Natta polypropylene catalysts, comprising MgCl2, TiCl4, and either a diether or a phthalate ester as internal donor, have been carried out by quenching propylene polymerization with tritiated ethanol, followed by radiochemical analysis of the resulting polymers. The purpose of this study was to determine the factors contributing to the high activities of the catalyst system MgCl2/TiCl4/diether—AlEt3. Active center contents (C*) in the range 2–8% (of total Ti present) were measured and a strong correlation between catalyst activity and active center content was found, indicating that the high activity of the diether‐containing catalysts is due to an increased proportion of active centers rather than to a difference in propagation rate coefficients. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1635–1647, 2006  相似文献   

12.
范志强 《高分子科学》2013,31(4):583-590
In this article, the effect of diethylaluminum chloride (DEAC) in propylene polymerization with MgCl2-supported Ziegler-Natta catalyst was studied. Addition of DEAC in the catalyst system caused evident change in catalytic activity and polymer chain structure. The activity decrease in raising DEAC/Ti molar ratio from 0 to 2 is a result of depressed production of isotactic polypropylene chains. The number of active centers in fractions of each polymer sample was determined by quenching the polymerization with 2-thiophenecarbonyl chloride and fractionating the polymer into isotactic, mediumisotactic and atactic fractions. The number of active centers in isotactic fraction ([Ci*]/[Ti]) was lowered by increasing DEAC/Ti molar ratio to 2, but further increasing the DEAC/Ti molar ratio to 20 caused marked increase of [Ci*]/[Ti]. The number of active centers that produce atactic and medium-isotactic PP chains was less influenced by DEAC in the range of DEAC/Ti = 0–10, but increased when the DEAC/Ti molar ratio was further raised to 20. The propagation rate constant of Ci* (k pi) was evidently increased when DEAC/Ti molar ratio was raised from 0 to 5, but further increase in DEAC/Ti ratio caused gradual decrease in k pi. The complicated effect of DEAC on the polymerization kinetics, catalysis behaviors and polymer structure can be reasonably explained by adsorption of DEAC on the central metal of the active centers or on Mg atoms adjacent to the central metal.  相似文献   

13.
Titanium tetrachloride heterogenized on reduced TiO2 has been studied as a catalyst for ethylene polymerization. The catalyst has good storage stability and exhibits good activity for ethylene polymerization. The polymer chains grow linearly during ca. 1 h, giving an average molecular weight of up to 2.5 × 106 which indicates that practically no β-elimination occurs. The activity of the catalyst at 50°C, based on Ti(III), is 7.6 × 106 PE/mol Ti h bar and based on the quantity of polyethylene formed it is 1.25 × 106 g PE/mol Ti h bar. The molecular weight of the polymer can be controlled with the addition of hydrogen, under 0.5 bar hydrogen, polyethylene with a molecular weight of 411,000 and a relatively low polydispersity index of 2.2 is obtained. The catalyst shows good thermal stability; the Arrhenius activation energy is 31.8 kJ/mol for the polymerization. The catalyst is also active for propylene polymerization, giving 3 × 106 g PP/mol Ti h bar with the high isotacticity of 93%. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
Hydrogen effects for propylene polymerization were investigated with ultra low TiCl3 loading MgCl2-supported catalysts in which the electric states of Ti species can be almost uniform. Hydrogen did not affect the catalyst activity, while the efficiency of hydrogen as a chain transfer agent was found to depend on the Ti content of the catalyst and the stereospecificity of the polymerization sites: Hydrogen was effective for isospecific sites independent of Ti contents, but inert for aspecific sites only at the extremely low Ti content. These results were explained within the island model, where isospecific sites may be located in the islands with other Ti species in their surroundings acting, as a steric hindrance for isospecific polymerization and as hydrogen dissociation sites after deactivation. Most of the aspecific sites should be isolated only at the extremely low Ti content. These isolated sites have no other Ti species in their surroundings, i.e. no hydrogen dissociation sites, and are inert to hydrogen.  相似文献   

15.
Ethylenebis(5‐chlorosalicylideneiminato)vanadium dichloride supported on MgCl2(THF)2 or on the same carrier modified by EtnAlCl3?n, where n = 1–3, was used in ethylene polymerization in the presence of MAO or a common alkylaluminium compounds as a cocatalyst. The support type alter vanadium loading and also change the characteristic of the catalytic active sites. Et2AlCl is the best activator for a catalyst which has been immobilized on a nonmodified support, whereas the systems which contain a carrier which has been modified by an organoaluminium compound reveal the highest activity in conjunction with MAO. That difference, together with different temperature effects on polymerization efficiency (i.e., decrease and increase of catalytic activity for increasing temperatures, respectively) suggest the formation of different types of active sites in the catalytic systems supported on modified and nonmodified magnesium carrier. However, all supported precatalysts possess a long lifetime, still being active towards ethylene polymerization after 2 h. All the systems yield wide MWD polyethylene, while bimodal MWD is found for some part of analyzed samples. Polyethylene with bimodal particle size distribution is formed with the system which contain modified carriers at higher temperatures. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3480–3489, 2009  相似文献   

16.
Ultra‐low‐loading Pd@PANI nanocomposites (0.048 w.t% Pd) were synthesized via a method that combined interfacial polymerization and in situ composite with camphor sulfonic acid ((+)‐CSA) as a dopant. Transmission electron microscopy (TEM), X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectra, and X‐ray photoelectron spectroscopy (XPS) were performed to characterize the structures. It can be used as an efficient catalyst for the reduction of nitroarenes in aqueous solution by using a smaller amount of NaBH4 (2.5 equiv.) at room temperature with high activity (TON = 3.4 × 103), good stability (cycled eight times), as well as wide applicability (27 substrates). The catalyst also showed a marvelous activity in the gram‐level reaction (yield = 92%). UV–Visible spectrophotometry was used to investigate the reaction kinetics for the reduction of 4‐nitrophenol to 4‐aminophenol, and the results reconfirmed the excellent performance of the catalyst. The unique properties and superior performance of the prepared ultra‐low‐loading Pd@PANI nanocomposites lead it be an attractive alternative catalyst for conventional organic catalytic applications.  相似文献   

17.
Nine new fluorinated half-sandwich titanocene complexes (1b–9b) based on substituted alkylindenes were synthesized, by reacting Me3SnF with the corresponding chloride species, and employed as catalyst precursors for the syndiospecific polymerization of styrene. When activated with methylaluminoxane (MAO), the new precursors 1b–9b exhibited increased activities by factors of 15-40 compared with the corresponding chlorinated compounds and provided improved syndiotacticity, enhanced melting temperature, and higher polymer molecular weights. The activities of indenyl and methyl- or phenyl-substituted indenyl complexes were found to be higher by factors of 4-12.5 than those of CpTiF3 and Cp*TiF3. More importantly, the amount of MAOcan be reduced to an Al : Ti molar ratio of 300 in the temperature range of 10-90°C. It is likely that Ti F, more polarized than the Ti Cl bond in the half-sandwich titanocenes, allows the formation of more active and stable active sites of Ti(III) complexes needed for the syndiospecific polymerization of styrene. Evidence in this direction is brought via the electron paramagnetic resonance (EPR) spectrum and redox titration. The higher activity and syndiospecificity of the fluorinated catalysts are attributable to a greater number, more stable Ti(III) active sites, and/or higher propagation rate constant. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2481–2488, 1999  相似文献   

18.
Catalytic activity of Me2SiCp*NtBuMX2/(CPh3)(B(C6F5)4) [MTi, XCH3 (1); MZr, X=iBu (2)] systems in the ethylene/styrene (E/S) feed was examined. Experimental data revealed high activity for the catalytic system (1) for copolymerization ethylene with styrene, whereas the system with enhanced catalytic activity for ethylene homopolymerization (2) was temporarily blocked in the styrene presence yielding, even at high styrene content, homopolyethylene as the final product. Properties of thus obtained polymers were analyzed. Catalytic system (1) occurred very sensitive to S/E ratio in the comonomers feed. The 10‐fold acceleration for ethylene consumption was shown in two experimental sets conducted at S/E = 1.3 ratio, 1 bar, and 7.5 bar ethylene pressure, respectively. The consequent enhancement in S/E ratio resulted in slowing down both ethylene consumption and catalyst deactivation rates. Atactic polystyrene was formed at high styrene content with the catalyst (1). Catalytic system (1) allowed design of products with the highest styrene content (20 mol %) at low ethylene pressure, moderate temperature, and high S/E ratio. The apparent activation energy estimated from the initial rates of ethylene consumption was 54.6 kJ/mol. Analysis of apparent reactivity factors (rE = 9 and rS = 0.04; rE × rS = 0.4) and 13C‐NMR copolymer spectra revealed an alternating tendency of the comonomers for active center incorporation. DSC measurements showed considerable decrease of melting points and crystallinity even for copolymers with low styrene content. The catalyst produced relatively high–molecular weight copolymers (140–150 kg/mol) even at 80°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1083–1093, 1999  相似文献   

19.
The kinetics of propylene polymerization catalyzed over a superactive and stereospecific catalyst for the initial build-up period was investigated in slurry-phase. The catalyst was prepared from Mg(OEt)2/benzoyl chloride/TiCl4 co-activated with AlEt3 in the absence or presence of external donor. Despite a very fast activation of the prepared catalyst the acceleration stage of polymerization could be identified by the precise estimation of polymerization kinetics for a very short period of time after the commencement of polymerization (ca. 2 min). The initial polymerization rate, (dRp/dt)0 extrapolated to the beginning of the polymerization was second order with respect to monomer concentration. The dependence of initial polymerization rate on the concentration of AlEt3 could be represented by Langmuir adsorption mechanism. The initial rate was maximum at about Al/Ti ratio of 20. The activation energy for the initiation reaction was estimated to be 14.3 kcal/mol for a short-time polymerization. The addition of a small amount of p-ethoxy ethyl benzoate (PEEB) as an external donor increased the percentage of isotactic polymer, which was obtained after 120 s of polymerization, to 98% and the initial polymerization rate decreased sharply as [PEEB]/[AlEt3] increased. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
Ion exchange resin immobilized Co(II) catalyst with a small amount of soluble CuCl2/Me6TREN catalyst was successfully applied to atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in DMF. Using this catalyst, a high conversion of MMA (>90%) was achieved. And poly(methyl methacrylate) (PMMA) with predicted molecular weight and narrow molecular weight distribution (Mw/Mn = 1.09–1.42) was obtained. The immobilized catalyst can be easily separated from the polymerization system by simple centrifugation after polymerization, resulting in the concentration of transition metal residues in polymer product was as low as 10 ppm. Both main catalytic activity and good controllability over the polymerization were retained by the recycled catalyst without any regeneration process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1416–1426, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号