首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The morphology and supramolecular structure of a polyacrylamide-formaldehyde ultrafiltration membrane synthesized by electropolymerization of monomers are studied. The experimental methods include transmission microscopy (differential interference contrast), atomic force microscopy, and scanning electron microscopy. It is established that the membrane is asymmetrical and comprise two layers, specifically, a dense near-cathode (selective) layer and a loose matrix layer. A mechanism of formation of the layers is proposed. The microgeometry of the surface of films is examined. The effect of electropolymerization conditions on the thickness of the membrane and the near-cathode layer and the coefficient of linear thermal expansion is studied.  相似文献   

3.
In general liquid–liquid demixing processes are responsible for the porous morphology of membranes obtained by immersion precipitation. For rapidly crystallizing polymers, solid–liquid demixing processes also generate porous morphologies. In this study, the interference of both phase transitions has been analyzed theoretically using the Flory–Huggins theory for ternary polymer solutions. It is demonstrated that four main thermodynamic and kinetic parameters are important for the structure formation in solution: the thermodynamic driving force for crystallization, the ratio of the molar volumes of the solvent and the nonsolvent, the polymer–solvent interaction parameter, and the rate of crystallization of the polymer compared to the rate of solvent-nonsolvent exchange. An analysis of the relevance of each of these parameters for the membrane morphology is presented. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 763–770, 1997  相似文献   

4.
The problem of chemical order of polyamide-hydrazides prepared from terephthaloyl chloride with an unsymmetrical monomer, p-aminobenzhydrazide, is discussed. An NMR method for identifying the molecular structure of species formed in the early stages of poly condensation has enabled the course of a polymerization to be followed during this time and the final degree of order to be predicted qualitatively. These studies have provided a demonstration that the structure of these polymers can be controlled to a significant degree by appropriate variations in experimental conditions. But even under the most adverse conditions usually employed, poly amide-hydrazides are found to be at least “partially ordered” copolymers. The techniques developed for this study may find application in the study of other polymer forming reactions with monomers having two functional groups with dissimilar reactivities.  相似文献   

5.
Blends of two linear polypropylenes (PP, having different molecular weights) were prepared to develop microporous membranes through melt extrusion followed by stretching. The role of high molecular weight chains on the row-nucleated lamellar crystallization was investigated. The orientation of crystalline and amorphous phases was measured by wide angle X-ray diffraction (WAXD) and Fourier transform infrared (FTIR). Long period spacing was obtained using small angle X-ray scattering (SAXS). The effects of annealing temperature and applied elongation during annealing on the crystallinity of the films were studied using differential scanning calorimetry (DSC). It was found that annealing at 140 °C contributed significantly to the perfection of the crystalline phase. Scanning electron microscopy (SEM) images of the membrane surface showed more pore density and uniform pore size as the amount of high molecular weight component increased. The addition of the high Mw PP improved the water vapor transmission rate (WVTR) of the membranes, indicating increased interconnectivity of the pores, which was also confirmed from cross-section SEM micrographs of the membranes. The surface area and pore dimensions of the microporous membranes were measured using the BET nitrogen absorption technique and mercury porosimetry, respectively. The influences of temperature and amount of stretching during cold and hot stretching on WVTR were also explored. Tensile properties in the machine and transverse directions (MD and TD, respectively) as well as puncture resistance in the normal direction (ND) were evaluated. As the high Mw PP was added, a slight reduction in the mechanical properties along MD and TD and no changes in ND were observed.  相似文献   

6.
Morphological control of membranes with plasma graft‐filling polymerization was proposed for thick, porous membranes. The morphology depended closely on the plasma within the membrane pore, which was determined by the plasma‐discharge power (PDP) and the gas pressure. The membrane morphology was investigated in terms of solvent composition in monomer solution, PDP, Ar pressure, and pore size of a substrate. Morphologies of membranes prepared were evaluated by a microscopic Fourier transform infrared mapping method. This study demonstrates that it is possible to control the membrane morphology by manipulating the plasma power and Ar pressure instead of morphological control by solvent‐dependent monomer activity. Additionally, through indirect methods this study reveals that plasma exists even in sub‐micropores (ca. 0.4 μm in diameter). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1216–1224, 2003  相似文献   

7.
Liquid-liquid demixing in propionitrile-polystyrene solutions has been observed (?2 < P/MPa < 4) using a Berthelot tube technique. The experimental isopleths join smoothly to ones gathered at positive pressure by another technique. The equation of state used to describe the transitions thus appears to be valid across the entire liquid range. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
9.
The crystallization, special interaction, rheological behavior, and mechanical properties of PVC/ferrocene blends were studied through WAXD, FTIR, XPS, capillary rheometry, and mechanical property tests. The experimental results showed that the tensile strength of PVC/ferrocene (100/10) amounts to 82 MPa, 1.3 times as high as that of PVC. In the presence of a small amount of ferrocene, the processability of PVC is also improved. Crystallization of ferrocene in the blend is inhibited. The FTIR characteristic peaks of ferrocene shift or disappear. A new peak appears in the C1s XPS spectra and the Cl (2p) XPS spectra of PVC/ferrocene blends, and most of the ferrocene in the blends cannot be extracted by solvent alcohol, indicating the existence of some intermolecular interactions between PVC and ferrocene which cause the mechanical strength of the blends to increase. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2828–2834, 1999  相似文献   

10.
The method described by Strobl and Hagedorn to analyze the Raman spectrum internal modes of semi-crystalline polyethylene has been applied to a set of selected polyethylene samples crystallized under controlled conditions. The crystallite structure can be described in terms of the relative amounts of the crystalline orthorhombic phase, the liquid-like amorphous phase and the interfacial region. The dependence of the level of crystallinity on molecular weight and crystallization conditions is very similar to that found by other methods. However, this method allows for the quantitative determination of the interfacial content which becomes significant for molecular weights greater than about 1×105 for linear polyethylene fractions, and for all the branched samples and copolymers. The degree of crystallinity determined from density measurements is equal to the sum of the crystallinity and interfacial content obtained from the Raman analysis while enthalpy of fusion measurements yield values which are equal to just the crystallinity content. The difference between the level of crystallinity obtained from density and enthalpy of fusion is thus found to be primarily due to interfacial contributions.Dedicated to Prof. Dr. F. H. Müller  相似文献   

11.
12.
The pore-forming activities of cyclic lipodepsipeptides (CLPs), syringopeptin 22A (SP22A) and syringomycin E (SRE) were compared on the human red blood cell (RBC) membrane and on bilayer lipid membranes (BLMs). SP22A above a concentration of 4 x 10(5) molecules/cell significantly increased the RBC membrane permeability for 86Rb. With electric current measurements on BLM, it was proved that like SRE, the SP22A formed two types of ion channels in the membrane, small and large, the latter having six times larger conductance and longer dwell time. Both CLPs formed clusters consisting of six small channels, and the channel-forming activity of SP22A is about one order of magnitude higher than that of SRE. A Hill coefficient of 2-3 estimated from the concentration dependence of these CLPs-induced lysis gave a proof of the pore oligomerization on RBCs. Transport kinetic data also confirmed that SP22A pores were oligomers of at least three monomers. While SRE pores were inactivated in time, no pore inactivation was observed with SP22A. The 86Rb efflux through SP22A-treated RBCs approached the tracer equilibrium distribution with a constant rate; a constant integral current was measured on the BLM for as long as 2.5 h as well. The partition coefficient (Kp = 2 x 10(4) l/mol) between the RBC membrane and the extracellular space was estimated for SRE to be at least six times higher than that for SP22A. This finding suggested that the higher ion permeability of the SP22A-treated cells compared to that of SRE was the result of the higher pore-forming activity of SP22A.  相似文献   

13.
The aqueous polymerization of acrylamide initiated by the potassium persulfate/lactic acid system catalyzed by Ag+ ions has been studied iodometrically over the temperature range from 35 to 50 ± 0.2°C. The rate of polymerization is governed by the expression Rp ∞ [M]0.8[K2S2O8]1.0[Ag]1.0 The deviation from normal kinetics has been studied. A tentative mechanism of initiation is suggested. The overall energy of activation is 5.52 kcal/mol.  相似文献   

14.
In spite of intensive studies over the past two decades, the influence of surface properties on bacterial adhesion and biofilm formation remains unclear, particularly on late steps. In order to contribute to the elucidation of this point, we compared the impact of two different substrates on the formation of bacterial biofilm, by analysing bacterial amount and biofilm structure on hydrophilic and hydrophobic surfaces. The surfaces were constituted by NH2- and CH3-terminated self-assembled monolayers (SAMs) on silicon wafers, allowing to consider only the surface chemistry influence because wafers low roughness. A strain of Escherichia coli K12, able to produce biofilm on abiotic surfaces, was grown with culture durations varying from 4 h to 336 h on both types of substrates. The amount of adhered bacteria was determined after detachment by both photometry at 630 nm and direct counting under light microscope, while the spatial distribution of adhered bacteria was observed by fluorescence microscopy. A general view of our results suggests a little influence of the surface chemistry on adherent bacteria amount, but a clear impact on dynamics of biofilm growth as well as on biofilm structure. This work points out how surface chemistry of substrates can influence the bacterial adhesion and the biofilm formation.  相似文献   

15.
A polystyrene‐block‐poly(methyl methacrylate) (PS‐b‐PMMA) exhibiting a well‐defined structure was prepared combining anionic polymerization and mercaptan/ε‐caprolactam living polymerization. To evaluate how this block copolymer affected the crystallization of polylactide (PLA), 0.5 wt % thiol‐terminated PS homopolymer (PSSH), PMMA, and PS‐b‐PMMA was melt‐blended with PLA. The calorimetric characterization of the nonisothermal and isothermal crystallization behavior was analyzed according to Avrami's theory, indicating that PS‐b‐PMMA more effectively increased the crystallization kinetics of the PLA matrix than did PSSH or PMMA. The results revealed that the synergistic effect of the PS and PMMA blocks appeared only when they were simultaneously presented in the PLA matrix. The PS block increased the number of nucleation sites and decreased the spherulite size, whereas the PMMA block facilitated the excellent dispersion of PS‐b‐PMMA in the PLA matrix as shown in polarizing optical microscope experiments. Incorporating PS‐b‐PMMA improved the PLA crystallization rate by promoting heterogeneous nucleation. In addition, incorporating 0.5 wt % PS‐b‐PMMA increased the relative crystallinity of PLA to 43.5%, and decreased the crystallization half‐time to 2.4 min when the blend was isothermal at 105 °C. The PLA crystal structure was unchanged by the presence of PS‐b‐PMMA; however, the crystallization rate was enhanced as probed by SEM and X‐ray diffraction. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 823–832  相似文献   

16.
For the first time, we have reported a halo (ring) formation occurred in the cross‐section of integrally skinned asymmetric membranes. These membranes were wet‐spun from solutions containing 30 and 33 wt % of 95/5 and 90/10 polyetherimide (PEI)/polybenzimidazole (PBI). Both Imaging X‐ray Photoelectron Spectroscopy (XPS) and Dynamic Mechanical Analyzer's (DMA) data suggest PEI and PBI form miscible blends the “halo” is not chemically different from the matrix and is most likely a physical phenomenon of unique pore morphology. In other words, uniform porosity was created in the middle of hollow fiber cross‐section area, which performs as a filter for light transmission. We found that the addition of PBI in PEI/DMAc solution not only depresses the macrovoid formation, but also changes the precipitation path: nucleation growth vs. spinodal decomposition. The formation of a halo within a membrane is possibly due to the fact that a uniform nucleation growth occurs in the ring region during the early stage of phase separation because of high solution viscosity and diffusion controlled solvent‐exchange process, and then separation grows in the mechanism of spinodal decomposition from small amplitude composition fluctuations. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1575–1585, 1999  相似文献   

17.
In this study, effects of methanol, ethanol and 1‐propanol as variable nonsolvent additives (NSAs) on the morphology and performance of flat sheet asymmetric polyethersulfone (PES) membranes were investigated. The membranes were prepared from PES/Polyvinylpyrrolidone (PVP)/N‐methyl‐2‐pyrrolidone (NMP) system via phase inversion. The obtained results indicate that with the addition of NSAs to the casting solution, the membrane morphology changes slowly from macrovoids to an asymmetric structure with finger‐like pores. By increasing the NSAs concentrations in the casting solution and decreasing their polarities, the membrane structure changes from finger‐like pores to sponge. The AFM and SEM images reveal that addition of NSA to the casting solution decreases the pore size of the prepared membranes and reduces the pure water flux and BSA solution flux, while increasing the protein rejection. Surface analysis of the membranes showed that mean pore size and surface porosity of the prepared membranes with NSAs in the casting solution are smaller compared with those of the membrane prepared with no NSA. Pure water flux and BSA solution flux through the membranes decrease and BSA rejection increases with increase in the concentration of NSAs and decrease in their polarity. Finally, it can be concluded that the Tg values of the PES membranes increase by addition of NSAs to the casting solution. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
We have studied the morphologies and crystalline forms of polyvinylidene fluoride (PVDF) membranes separately prepared in four different diluents bearing >C?O groups, namely 1,2‐propylene glycol carbonate (PGC), dimethyl phthalate (DMP), diphenyl ketone (DPK), and dibutyl phthalate (DBP), by the thermally induced phase separation (TIPS) method. The permittivities of the diluents and PVDF were measured to compare the different PVDF–diluent systems. The results showed the permittivity of PGC to be much greater than that of PVDF, and those of DMP and DBP to be lower than that of PVDF. The permittivity difference between DPK and PVDF was not apparent above 120 °C. On cooling mixtures with a PVDF concentration of 10 wt %, PVDF crystallization was observed in the PVDF–DMP, PVDF–DBP, and PVDF–PGC systems, while liquid–liquid phase separation occurred in the PVDF–DPK system. A cross‐section of the PVDF–PGC membrane presented smooth PVDF particles in the β‐phase crystalline form. Those of the PVDF–DMP and PVDF–DBP membranes presented PVDF particles consisting of a fibrillar network in the α‐phase. The PVDF–DPK membrane preferentially adopted an α‐phase bicontinuous channel structure. When the concentration of PVDF was 60 wt %, the cross‐sections of the above four membranes revealed PVDF polyhedra, among which the PVDF–DMP, PVDF–DBP, and PVDF–DPK membranes retained the α‐phase crystalline form, and the diffraction peak of the α‐phase became visible in the X‐ray diffraction (XRD) spectrum of the PVDF–PGC membrane. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

19.
Lignin is an underexploited side-stream of pulp and paper industry and biorefineries, being used for energy production at mill site or as low value material for dispersants or binding applications. However, an integrated process of reaction and separation can be implemented for the production of high added-value monomeric phenolic chemicals such as vanillin and syringaldehyde. In this review, the main research advances in the recovery of vanillin and syringaldehyde resulting from oxidation of lignin are addressed, covering various separation methodologies namely liquid-liquid extraction, supercritical fluid extraction, distillation, crystallization, membrane separation, and adsorption. Studies in this area started in the early years of the 20th century, but in the last decades several processes have been suggested, mainly for vanillin separation. Finding the ultimate industrially feasible process is still a necessary task and this review points out the most promising technologies and sequence of processes.  相似文献   

20.
The morphologies of the asymmetric membranes of polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS) prepared and simultaneously oxidized with different substrate solutions were investigated with atomic force microscopy (AFM), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance infrared spectroscopy (ATR-FTIR). We used the KMnO4 aqueous solution and KMnO4/H2SO4 mixture solution as solvent-casting substrates, as well as oxidized reagents. The surface composition and functional groups of membranes were also measured. The effect of casting substrates on morphological changes was discussed through possible chemical reactions. It was found that the SEBS membranes were transformed from an ordered microphase-separated structure to disordered nodular or sponge-like structures. The former might be contributed to MnO2 depositions while the latter was caused by the bond interruption, after KMnO4 or KMnO4/H2SO4 oxidizing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号