首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report dielectric relaxation and Rayleigh-Brillouin spectroscopic measurements on the side chain polymer poly(n-hexylmethacrylate), PHMA (Tg = 268 K), exhibiting a broad glass transition region. The dielectric loss curves can be represented by single Havriliak-Negami functions in the temperature range of 260–450 K. The width of the distribution relaxation function is a decreasing function of temperature up to T = 333 K ≊ 1.24 × Tg and remains virtually constant above that temperature. This is interpreted as marking the merging of the α-process with a slow β-relaxation in agreement with the value of the cooperativity length associated with the α-mode. Hence above that temperature, the relaxation times confirm well to an Arrhenius temperature dependence. The hypersonic dispersion deduced from the Brillouin spectra (210–550 K) surprisingly peaks at temperatures near Tg which bears no relation to the main α-relaxation. This structural relaxation is rather associated with the side hexyl group motion showing striking resemblance with the hypersonic dispersion in molecular liquids. It is conceivable that the observed damping in PHMA is dynamically related to the internal plasticization effect of the hexyl group. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
In this study, we examine the effects of heating, nucleation, cooling, and reheating on the thermal properties and structure of metallocene isotactic polypropylene (m‐iPP) that had been prepared initially in a standard state containing nearly equal amounts of the crystallographic α and γ phases. Heat treatment was achieved through partial melting and annealing by the heating of samples to self‐nucleation temperatures (Tn's) that spanned and exceeded the entire range of melting of the standard state, from 122 to 160 °C. The relative amounts of α and γ crystals are determined from the area under the unique wide‐angle X‐ray reflections. The lower and upper endotherms are caused by the melting of γ and α crystals, respectively. Four distinct regions of Tn were identified on the basis of the thermal and structural parameters of m‐iPP. In region I, Tn is below the peak melting temperature of the γ phase. Here, γ crystals are annealed and α crystals are barely affected by Tn. In region II, Tn is above the peak of the lower endotherm but below the peak of the upper endotherm. γ crystals melt, and α crystals anneal. In both regions I and II, the portion of the sample melted at Tn recrystallizes epitaxially with existing parent α lamellae as the substrates, and the amount of α always exceeds the amount of γ. In region III, Tn is above the peak of the upper endotherm, and all γ crystals and some or all α crystals are melted at Tn. The number of α‐crystal nuclei steadily decreases as Tn increases, causing systematic depression of the crystallization and melting temperatures seen during cooling. Finally, in region IV, Tn exceeds the upper endotherm, and only small self‐nuclei or heterogeneous nuclei remain. Recrystallization is now suppressed to lower temperatures. For regions III and IV, a crossover behavior in the relative amounts of α and γ is observed during cooling from Tn. Because of the effective nucleating ability of α toward γ, as the temperature drops, the amount of γ increases and then exceeds the amount of α. With subsequent reheating, the reverse crossover occurs because of the lower melting point of γ. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1644–1660, 2002  相似文献   

3.
α-Alkylacrylic acids (RAA's) bearing n-alkyl groups were found to homopolymerize with slower rates than acrylic and methacrylic acids to number-average molecular, weight (M?n) of 104 or above. When the α-substituent was a branched alkyl group, the polymerization rate and M?n decreased further. Reactivities of RAA's in copolymerization were interpreted by steric and resonance effects of the alkyl group using Hancock's steric substituent constant. Comparison of the reactivities of RAA's with those of methyl α-alkylacrylates revealed that replacement with the smaller carboxyl group facilitates polymerization and copolymerization. Preference of co-syndiotactic propagation in the copolymerization of methacrylic acid with styrene changed to random fashion in the copolymerization of the α-higher alkyl derivatives. After methylation with diazomethane, the homopolymers were shown to be thermally less stable than poly(methyl methacrylate). Tg's of poly(methyl α-ethylacrylate) and poly(methyl α-n-propylacrylate) were 57 and 25°C, respectively.  相似文献   

4.
Amphiphilic polymer networks consisting of hydrophilic poly(2‐hydroxyethyl methacrylate) (PHEMA) and hydrophobic polyisobutylene (PIB) chains were synthesized from a cationic copolymer of isobutylene (IB) and 3‐isopropenyl‐α,α‐dimethylbenzyl isocyanate (IDI) prepared at ?50 °C in dichloromethane in conjunction with SnCl4. The isocyanate groups of this random copolymer, PIB(NCO)n, were subsequently transformed in situ to methacrylate (MA) groups in the dibutyltin dilaurate‐catalyzed reaction with 2‐hydroxyethyl methacrylate (HEMA) at 30 °C. The resulting PIB(MA)n with number–average molecular weight 8200 and average functionality Fn ~ 4 per chain was in situ copolymerized radically with HEMA at 70 °C, giving rise to the amphiphilic networks containing 41 and 67 mol % HEMA. PHEMA–PIB network containing 43 mol % HEMA was also prepared by radical copolymerization of PIB(MA)n precursor with HEMA using sequential synthesis. An amphiphilic nature of the resulting networks was proved by swelling in both water and n‐heptane. PIB(NCO)n and PIB(MA)n were characterized by FTIR spectroscopy, SEC and the latter also by 1H NMR spectroscopy. Solid state 13C NMR spectroscopy was used for characterization of the resulting PHEMA–PIB networks. Whereas single glass‐transition temperature, Tg = ?67.4 °C, was observed for the rubbery crosslinked PIB prepared by reaction of PIB(NCO)n with water, the PHEMA–PIB networks containing 67 and 41 mol % HEMA showed two Tg's: ?70.4 and 102.7 °C, and ?63 and 107.2 °C, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2891–2900, 2006  相似文献   

5.
Biodegradable, amphiphilic, diblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol) (PCL‐b‐PEG), triblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol)‐block‐poly(ε‐caprolactone) (PCL‐b‐PEG‐b‐PCL), and star shaped copolymers were synthesized by ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) methyl ether or poly(ethylene glycol) or star poly(ethylene glycol) and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature to yield monomodal polymers of controlled molecular weight. The chemical structure of the copolymers was investigated by 1H and 13C NMR. The formation of block copolymers was confirmed by 13C NMR and DSC investigations. The effects of copolymer composition and molecular structure on the physical properties were investigated by GPC and DSC. For the same PCL chain length, the materials obtained in the case of linear copolymers are viscous whereas in the case of star copolymer solid materials are obtained with low Tg and Tm temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3975–3985, 2007  相似文献   

6.
((?)‐Menthyl (S)‐6′‐acrylyl‐2′‐methyloxy‐1,1′‐binaphthalene‐2‐carboxylate ( 3 ) was synthesized and anionically polymerized using n‐BuLi as an initiator in toluene. The monomer 3 was levorotatory and had an [α]D25 value of ?72.4, but its corresponding polymer poly‐ 3 was dextrorotatory and showed an [α]D25 value of +162.0. Poly‐ 3 was confirmed to exist in the form of one‐handed helical structure in solution by means of comparing the specific optical rotation and the CD spectra with that of 3 and the model compounds such as (?)‐menthyl (S)‐6′‐propionyl‐2′‐methyloxy‐1,1′‐binaphthalene‐2‐carboxylate 2b and (?)‐menthyl (S)‐6′‐heptanoyl‐2′‐methyloxy‐1,1′‐binaphthalene‐2‐carboxylate 2c . This conclusion was also confirmed by the fact that the g‐value of poly‐ 3 is about 11 times of that of monomer 3 .  相似文献   

7.
The microphase separation transition (MST) has been studied for short chain diblock copolymers poly(styrene-b-isoprene) and poly(styrene-b-mma). A detailed analysis of small-angle x-ray scattering (SAXS) profiles in the homogeneous phase allows determination of the interaction parameter and the spinodal temperature Ts of the MST. Ts for the PS/PI diblocks is found to be lower than the glass transition temperature of their hard blocks. This results in a coupling of the MST and the glass transition. Using both structural (SAXS) and thermal differential scanning calorimetry (DSC) methods it is shown that an endothermal peak found in the DSC diagrams is related to the combined effect of the MST and the glass transition. © 1992 John Wiley & Sons, Inc.  相似文献   

8.
An Erratum has been published for this article in J. Polym. Sci. Part A: Polym. Chem. (2004) 42(22) 5845 New multiblock copolymers derived from poly(L‐lactic acid) (PLLA) and poly(ε‐caprolactone) (PCL) were prepared with the coupling reaction between PLLA and PCL oligomers with ? NCO terminals. Fourier transform infrared (FTIR), 13C NMR, and differential scanning calorimetry (DSC) were used to characterize the copolymers and the results showed that PLLA and PCL were coupled by the reaction between ? NCO groups at the end of the PCL and ? OH (or ? COOH) groups at the end of the PLLA. DSC data indicated that the different compositions of PLLA and PCL had an influence on the thermal and crystallization properties including the glass‐transition temperature (Tg), melting temperature (TM), crystallizing temperature (Tc), melting enthalpy (ΔHm), crystallizing enthalpy (ΔHc), and crystallinity. Gel permeation chromatography (GPC) was employed to study the effect of the composition of PLLA and PCL and reaction time on the molecular weight and the molecular weight distribution of the copolymers. The weight‐average molecular weight of PLLA–PCL multiblock copolymers was up to 180,000 at a composition of 60% PLLA and 40% PCL, whereas that of the homopolymer of PLLA was only 14,000. A polarized optical microscope was used to observe the crystalline morphology of copolymers; the results showed that all polymers exhibited a spherulitic morphology. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5045–5053, 2004  相似文献   

9.
Melt‐crystallized, low molecular weight poly(L ‐lactic acid) (PLLA) consisting of α crystals was uniaxially drawn by solid‐state extrusion at an extrusion temperature (Text) of 130–170 °C. A series of extrusion‐drawn samples were prepared at an optimum Text value of 170 °C, slightly below the melting temperature (Tm) of α crystals (~180 °C). The drawn products were characterized by deformation flow profiles, differential scanning calorimetry (DSC) melting thermograms, wide‐angle X‐ray scattering (WAXD), and small‐angle X‐ray scattering as a function of the extrusion draw ratio (EDR). The deformation mode in the solid‐state extrusion of semicrystalline PLLA was more variable and complex than that in the extensional deformation expected in tensile drawing, which generally gave a mixture of α and β crystals. The deformation profile was extensional at a low EDR and transformed to a parabolic shear pattern at a higher EDR. At a given EDR, the central portion of an extrudate showed extensional deformation and the shear component became progressively more significant, moving from the center to the surface region. The WAXD intensities of the (0010)α and (003)β reflections on the meridian as well as the DSC melting thermograms showed that the crystal transformation from the initial α form to the oriented β form proceeded rapidly with increasing EDR at an EDR greater than 4. Furthermore, WAXD showed that the crystal transformation proceeded slightly more rapidly at the sheath region than at the core region. This fact, combined with the deformation profiles (shear at the sheath and extensional at the core), indicated that the crystal transformation was promoted by shear deformation under a high pressure rather than by extensional deformation. Thus, a highly oriented rod consisting of only β crystals was obtained by solid‐state extrusion of melt‐crystallized, low molecular weight PLLA slightly below Tm. The structure and properties of the α‐ and β‐form crystals were also studied. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 95–104, 2002  相似文献   

10.
Summary: Star‐shaped hydroxy‐terminated poly(ε‐caprolactone)s (ssPCL), with arms of different lengths, were obtained by ring‐opening polymerization (ROP) of ε‐caprolactone initiated by pentaerythritol, and were condensed with α‐methyl‐ω‐(3‐carboxypropionyloxy)‐poly(ethylene oxide)s ( = 550–5 000) to afford four‐armed PCL‐PEO star diblock copolymers (ssPCL‐PEO). The polymers were characterized by 1H and 13C NMR spectroscopy and size‐exclusion chromatography (SEC). The melting behavior of ssPCLs was studied by differential scanning calorimetry (DSC). X‐ray diffraction and DSC techniques were used to investigate the crystalline phases of ssPCL‐PEOs.

The part of the synthesis of four‐armed star‐shaped diblock poly(ε‐caprolactone)‐poly(ethylene oxide) copolymers as described.  相似文献   


11.
Micromechanical string resonators are used as a highly sensitive tool for the detection of glass transition (Tg or α relaxation) and sub‐Tg (β relaxation) temperatures of polystyrene (PS) and poly (methyl methacrylate) (PMMA). The characterization technique allows for a fast detection of mechanical relaxations of polymers with only few nanograms of sample in a quasi‐static condition. The polymers are spray coated on one side of silicon nitride (SiN) microstrings. These are pre‐stressed suspended structures clamped on both ends to a silicon frame. The resonance frequency of the microstrings is then monitored as a function of increasing temperature. α and β relaxations in the polymer affect the net static tensile stress of the microstring and result in measureable local frequency slope maxima. Tg of PS and PMMA is detected at 91 ±2°C and 114 ±2°C, respectively. The results match well with the glass transition values of 93.6°C and 114.5°C obtained from differential scanning calorimetry of PS and PMMA, respectively. The β relaxation temperatures are detected at 30 ± 2°C and 33 ± 2°C for PS and PMMA which is in accordance with values reported in literature. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1035–1039  相似文献   

12.
A series of novel mesogen‐jacketed liquid‐crystal polymers, poly[2,5‐bis(4′‐alkoxyphenyl)‐styrene] (P‐n, n = 1–11), were prepared via free‐radical polymerization of newly synthesized monomers, 2,5‐bis(4′‐alkoxyphenyl)styrene (M‐n, n = 1–11). The influence of the alkoxy tail length on the liquid‐crystalline behaviors of the monomers and the polymers was investigated with differential scanning calorimetry (DSC), thermogravimetry, polarized optical microscopy (POM), and wide‐angle X‐ray diffraction (WAXD). The monomers with n = 1–4, 9, and 11 were monotropic nematic liquid crystals. All other monomers exhibited enantiotropic nematic properties. Their melting points (Tm's) decreased first as n increased to 6, after which Tm increased slightly at longer spacer lengths. The isotropic–nematic transition temperatures decreased regularly with increasing n values in an odd–even way. The glass‐transition temperatures (Tg's) of the polymers first decreased as the tail lengths increased and then leveled off when n ≥ 7. All polymers were thermally stable and entered the mesophase at a temperature above Tg. Upon further heating, no mesophase‐to‐isotropic melt transition was observed before the polymers decomposed. WAXD studies indicated that an irreversible order–order transition for the polymers with short tails (n ≤ 5) and a reversible order–order transition for those with elongated tails (n ≥ 6) occurred at a temperature much higher than Tg. However, such a transition could not be identified by POM and could be detected by DSC only on heating scans for the polymers with long tails (n ≥ 7). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1454–1464, 2003  相似文献   

13.
The glass transition behavior in athermal blends of poly(α‐methyl styrene) (PaMS) and its hexamer is investigated using differential scanning calorimetry (DSC). The results, along with previous data on similar blends of PaMS/pentamer, are analyzed in the context of the Lodge–McLeish self‐concentration model. A methodology is described to partition the calorimetric transition to obtain effective Tgs for each component of the blend. The dependences of these effective Tgs on overall blend composition are described by the Lodge–McLeish model, although the self‐concentration effect is less than expected based on the Kuhn length. The length scales of the cooperatively rearranging regions for the two components in the blends are also calculated adapting Donth's fluctuation model to the partitioned DSC transitions and are found to be similar for the two components and show a slight decrease at intermediate concentrations. The kinetics associated with the glass temperature, Tg, is examined by studying the cooling rate dependence of Tg for the pure components and the blends, as well as by examining the enthalpy overshoots in the heating DSC scans. It is observed that the cooling rate dependence of Tg in PaMS/hexamer blends at intermediate concentrations is similar to that of the hexamer, indicating that the kinetics of the glass transition for blends is dominated by the high mobility oligomeric component. Moreover, compared to the pure materials, the PaMS/hexamer blends exhibit a considerably depressed enthalpy overshoot, presumably resulting from their broader relaxation time distribution. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 418–430, 2008  相似文献   

14.
The phase separation of a crystalline and miscible polymer blend, poly(ε-caprolactone) /poly(styrene-co-acrylonitrile) (PCL/SAN), has been studied by differential scanning calorimetry (DSC), using a SAN containing 28.3% of acrylonitrile units. Several phenomena can be associated with the occurrence of phase separation depending upon the composition of the mixture. Following annealing at high temperatures, below and above the phase separation temperature Tc, three cases can be distinguished. In Case I, there is no sign of crystallization during quenching and DSC scanning, but a melting peak is observed at Tc, and above. In Case II, there is no crystallization on quenching but it does occur during the DSC run; the shift of the crystallization peak can then be related to Tc. In Case III, there is crystallization on quenching, and additional crystallization during the DSC run; the change of area of the crystallization peak is indicative of Tc. From these observations, the phase diagram of the system was determined. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
Alkali and earth‐alkali salts of dicyclopentadiene dicarboxylic acid (DCPDCA) were prepared and employed as monomers in the polyesterification with an α,ω‐dihalide monomer, such as 1,4‐dichlorobutane (DCB), 1,4‐dibromobutane (DBB), α,α′‐dichloro‐p‐xylene (DCX), and α,α′‐dibromo‐p‐xylene (DBX). Novel linear polymers that possessed repeating moieties of dicyclopentadiene ( DCPD ) in the backbone were thus prepared. The IR and NMR spectra indicated that poly(tetramethylene dicyclopentadiene dicarboxylate) (PTMDD) with a number‐average molecular weight (Mn ) of about 1× 104 and poly(p‐xylene dicyclopentadiene dicarboxylate) (PXDD) with a Mn of 4–6 × 103 were obtained with an yield of about 80% via the polyesterification of the alkali salts with DBB and DCX, respectively. The reaction was carried out in the presence of a phase transfer catalyst, such as BzMe3NBr or poly(ethylene glycol), in DMF at 100 °C for 4 h. Oligomers with a lower Mn (1–2 × 103) were obtained when the earth‐alkali salts were employed as salt monomers. Compared to the irreversible linear polymers, poly(p‐xylene terephthalate) (PXTP) and poly(p‐xylene maleate) (PXM), prepared through the reaction between DCX and the potassium salts of terephthalic and maleic acid, respectively, the specific viscosities (ηsp) of the new linear polymers increased abnormally with the decrease of the temperature from 200 °C to 100 °C. This occurred due to the thermally reversible dedimerization/redimerization of  DCPD moieties of the backbone of the polymers via the catalyst‐free Diels–Alder/retro Diels–Alder cycloadditive reactions. The ratio of the ηsp at 100 °C and 200 °C of the reversible polymers was found to be much higher than that of PXTP and PXM, even when the heating/cooling cycle was carried out several times under a N2 atmosphere. The obtained results indicated that thermally reversible covalently bonded linear polymer can be obtained by introducing the  DCPD structure into the backbone of the polymer through the polymerization of a monomer containing the  DCPD moiety. The reversible natures of the polymers and oligomers might be useful in preparing easily processable and recyclable polymers and thermosensor materials. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1662–1672, 2000  相似文献   

16.
In this article, our main goal is to combine hyperbranched polymer with β‐cyclodextrin (β‐CD) to establish a novel functional polymer species with core‐shell structure and supramolecular system for further application in inclusion technologies and the complex drugs delivery system. Therefore, two β‐CD polymer brushes based on hyperbranched polycarbosilane (HBP) as a hydrophobic core and poly(N,N‐dimethylaminoethyl methacrylate) (PDMA) carrying β‐CD units as a hydrophilic shell were synthesized. Hyperbranched polycarbosilane macroinitiator carrying ? Cl groups (HBP‐Cl) was also prepared by using 1,1,3,3‐tetrmethyldisiloxane, allyl alcohol, and chloroacetyl chloride as reagents. The molecular structures of HBP‐Cl macroinitiator and β‐CD polymer brushes were characterized by Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR) spectroscopies, size exclusion chromatography/multi‐angle laser light scattering (SEC/MALLS) and laser particle size analyzer. The results indicate that the grafted chain length of two β‐CD polymer brushes can be controlled by changing the feed ratio. Differential scanning calorimetry (DSC) results show that two β‐CD polymer brushes have two glass transition temperatures (Tgs) from a hydrophobic core part and a hydrophilic shell part, respectively, and the Tg from PDMA is higher than that of HBP‐g‐PDMA. Thermalgravimetric analyzer (TGA) analysis indicates that the thermostability of two β‐CD polymer brushes is higher than that of HBP, but is lower than that of HBP‐g‐PDMA. Using phenolphthalein (PP) as a guest molecule, molecular inclusion behaviors for two β‐CD polymer brushes were studied. It reveals that two β‐CD polymer brushes possess molecular inclusion capability in PP buffer solution with a fixed concentration. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5036–5052, 2008  相似文献   

17.
The esterification of poly(γ-glutamic acid) (γ-PGA) produced by Bacillus subtilis F2-01 with alkyl halides was carried out at 60°C in N-methyl-2-pyrrolidinone (NMP) in the presence of sodium bicarbonate to obtain the corresponding esterified γ-PGA. The thermal properties of these γ-PGA esters were examined by differential scanning calorimetry and thermogravimetry. γ-PGA esters were more stable than free acid type γ-PGA, which decomposed at 210°C. Melting temperature (Tm) of γ-PGA esters could be observed at 230-250°C. Tm of γ-PGA n-alkyl esters reached a maximum at an alkyl chain length of n = 3. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
Tin containing macrocyclic polylactones were prepared by di-n-butyl-2-stanna-1,3-dioxepane-initiated polymerizations of ε-caprolactone in bulk. The average ring size was varied from 10 to 100 monomer units via the monomer/initiator (M/I) ratio. Addition of terephthaloyl or sebacoyl chloride to the in situ prepared macrocycles yielded polycondensates under elimination of di-n-butyl tin dichloride. The molecular weights increased with the reaction temperature (e.g., 80–140°C) and with the size of the macrocycles. Number-average molecular weights (Mns) up to 90,000 and polydispersities between 1.65 and 2.0 were obtained. Further polycondensations were conducted with isophthaloyl chloride, 4,4′-biphenyldicarbonylchloride and 4,4′-phenylenebisacryloylchloride. Several polycondensations were performed with macrocyclic poly (δ-valerolactone) and poly (β-D ,L -butyrolactone). In those cases the increase of the molecular weight was lower. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1373–1378, 1998  相似文献   

19.
Poly(ethylene‐bε‐caprolactone) (PE‐b‐PCL) diblock copolymers were synthesized by ring‐opening polymerization (ROP) of ε‐caprolactone (CL) with α‐hydroxyl‐ω‐methyl polyethylene (PE‐OH) as a macroinitiator and ammonium decamolybdate (NH4)8[Mo10O34] as a catalyst. Polymerization was conducted in bulk (130–150°C) with high yield (87–97%). Block copolymers with different compositions were obtained and characterized by 1H and 13C NMR, MALDI‐TOF, SAXS, and DSC. End‐group analysis by NMR and MALDI‐TOF indicates the formation of α‐hydroxyl‐ω‐methyl PE‐b‐PCL. The PE‐b‐PCL degradation was studied using thermogravimetric analysis (TGA) and alkaline hydrolysis. The PCL block was hydrolyzed by NaOH (4M), without any effect on the PE segment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
α-End-functionalized polymers and macromonomers of β-pinene were synthesized by living cationic isomerization polymerization in CH2Cl2 at −40°C initiated with the HCl adducts [ 1; CH3CH(OCH2CH2X)Cl; X = chloride ( 1a ), acetate ( 1b ), and methacrylate ( 1c )] of vinyl ethers carrying pendant substituents X that serve as terminal functionalities. In conjunction with TiCl3(OiPr) and nBu4NCl, these functionalized initiators led to living β-pinene polymerization where the carbon–chlorine bond of 1 was activated by TiCl3(OiPr). Similarly, end-functionalized poly(p-methylstyrene)-block-poly(β-pinene) were also obtained. 1H-NMR analysis showed that the polymers possess controlled molecular weights (DP n = [M]0/[ 1 ]0) and number-average end functionalities close to unity. The end-functionalized methacrylate-capped macromonomers form 1c were radically copolymerized with methyl methacrylate (MMA) to give graft copolymers carrying poly(β-pinene) or poly(p-methylstyrene)-block-poly(β-pinene) as graft chains attached to a PMMA backbone. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1423–1430, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号