首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Free radical ring-opening polymerization of 2-methylene-1,3-dioxepane (MDP) in the presence of 2,2,6,6-tetramethyl-1-piperidinyloxy free radical (TEMPO) has been achieved to afford a chain polyester (PMDP) with di-t-butyl peroxide (DTBP) as an initiator at 125°C. The polydispersity of the polymers decreases as the concentration of TEMPO is increased. At high TEMPO concentrations, the polydispersity as low as 1.2 was obtained, which is below the theoretical lower limit for a conventional free radical polymerization. A linear relationship between the number-average molecular weight (Mn) and the monomer conversion was observed with the best-fit line passing very close to the origin of the Mn-conversion plot. The isolated and purified TEMPO-capped PMDP polymers have been employed to prepare chain extended polymers upon addition of more MDP monomer. These results are suggestive of the “living” polymerization process. A possible polymerization mechanism might involve thermal homolysis of the TEMPO-PMDP bonds followed by the addition of the monomers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 761–771, 1998  相似文献   

2.
A new series of 1,1,3,3‐tetraethylisoindoline‐2‐oxyl (TEISO)‐based alkoxyamines was prepared. The half‐lives for thermal dissociation indicated that the most sterically congested cumyl‐TEISO alkoxymine had the greatest potential as an initiator for the polymerization of monomers at lower temperatures. The polymerization of styrene at 110 °C gave a linear evolution of Mn with conversion in the early stages. Further evidence for the “living” nature was given by the polydispersities of the polymers that remained low (Mw/Mn = 1.13–1.27) throughout the polymerization (up to 80% conversion). No polymer was formed for the styrene system in a reasonable time below 100 °C. High‐performance liquid chromatographic/mass spectrometric investigations of the distribution of trapped oligomers containing one to nine monomer units formed at 60 °C revealed that the trapping of oligomeric cumyl–styryl radicals by TEISO is irreversible at this temperature. Methyl methacrylate polymerized with cumyl‐TEISO at 60–70 °C, although the initial high rates of polymerization soon decreased to zero at low conversions (10–15%), and the high polydispersities (Mw/Mn = 1.42–1.73) indicated significant side reactions. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1232–1241, 2001  相似文献   

3.
The first application of atom transfer radical “bulk” polymerization (ATRBP) in molecular imprinting is described, which provides molecularly imprinted polymers (MIPs) with obvious imprinting effects towards the template, very fast binding kinetics, and an appreciable selectivity over structurally related compounds. In comparison with the MIP prepared via the normally used traditional “bulk” free radical polymerization (BFRP), the MIPs obtained via ATRBP showed somewhat lower binding capacities and apparent maximum numbers Nmax for high‐affinity sites as well as quite similar binding association constants Ka for high‐affinity sites and high‐affinity site densities, in contrast with the previous reports (e.g., nitroxide/iniferter‐mediated “bulk” polymerization provided MIPs with improved properties). This is tentatively ascribed to the occurrence of rather fast gelation process in ATRBP, which greatly restricted the mobility of the chemical species, leading to a heavily interrupted equilibrium between dormant species and active radicals and heterogeneous polymer networks. In addition, the general applicability of ATRBP was also confirmed by preparing MIPs for different templates. This work clearly demonstrates that applying controlled radical polymerizations (CRPs) in molecular imprinting not always benefits the binding properties of the resultant MIPs, which is of significant importance for the rational use of CRPs in generating MIPs with improved properties. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 532–541, 2010  相似文献   

4.
Polystyrene particles “armoured” with nanosized graphene oxide (GO) sheets have been prepared by aqueous miniemulsion polymerization of styrene, exploiting the amphiphilic properties of GO in the absence of conventional surfactants. The nanoscale GO sheets were prepared from graphite nanofibers of diameter approximately 100 nm based on a novel procedure, thus effectively ensuring the absence of larger sheets. Polymerization proceeded to high conversion with minor coagulation, with final number‐average particle diameters of approximately 500 nm, but relatively broad particle size distributions. Scanning electron microscopy analysis revealed particles with a textured surface, consistent with the expected morphology. Interestingly, analysis of GO sheets recovered from the polymerization revealed that the GO sheets are partially reduced during the polymerization—approximately 50% of the initial carboxyl groups of the GO were lost, consistent with some loss in colloidal stability at high conversion. The overall approach offers a convenient and attractive synthetic route to novel graphene‐based polymeric nanostructures. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

5.
A polymer consisting of a saturated carbon backbone with pendent acetylenic groups was prepared from monovinylacetylene. A titration was performed between the monomer and tertiary butyllithium, its lithiating agent. The charge transfer complex formed between the solvent THF and the tertiary butyllithium was used as an indicator of the unreacted butyllithium. Hence, a stoichiometric quantity of tertiary butyllithium was added dropwise to a solution of monovinylacetylene in THF to form lithiovinylacetylene. The addition of a slight excess of butyllithium led to the polymerization of the lithiated monomer. The obtained polymer was reprotonated and characterized. This polymerization was evaluated as a possible route to synthesize poly(vinylacetylene) with processable molecular weights, for its application as a potential carbon fiber precursor. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
The effect and the participation of the furfuryl ring, in particular the hydrogen at position C-5 in the free radical polymerization are analyzed following the polymerization of furfuryl acrylate (FA) and furfuryl methacrylate (FM) initiated by AIBN under photochemical activation. The results obtained indicate that the polymerization of FA deviates from the classical free radical kinetic scheme, giving rise to crosslinked polymers even at a degree of conversion lower than 7%. This behavior is well explained taking into consideration the participation of the furfuryl ring which acts as a degradative transfer agent. This was demonstrated by the kinetic analysis of the free radical polymerization of MMA initiated by the thermal decomposition of AIBN in the presence of different concentrations of furfuryl acetate. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
This work reports the use of cocatalysts in addition to “smart” ruthenium catalysts for Ru‐mediated reversible deactivation radical polymerization (RDRP) in miniemulsion, allowing for the synthesis of final products with significantly reduced residual metal. Using amine cocatalysts in miniemulsion allows for high conversions (> 90%) in under 10 h. Two forms of ferrocene cocatalysts are also used, including “smart” thermoresponsive PEGylated ferrocene derivatives (FcPEG) and ferrocene containing surfactants (FcTMA). Using “smart” thermoresponsive cocatalyst at low concentrations, rate enhancements in BMA and BzMA polymerizations are observed, with good catalyst removability. Using the FcTMA cocatalyst surfactant, increasing monomer hydrophobicity is shown to increase the polymerization rate and initiator efficiency. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 305–312  相似文献   

8.
Well‐defined ABCD 4‐Miktoarm star‐shaped quarterpolymers of [poly(styrene)‐poly(tert‐butyl acrylate)‐poly(ethylene oxide)‐poly(isoprene)] [star(PS‐PtBA‐PEO‐PI)] were successfully synthesized by the combination of the “click” chemistry and multiple polymerization mechanism. First, the poly(styryl)lithium (PS?Li+) and the poly(isoprene)lithium (PI?Li+) were capped by ethoxyethyl glycidyl ether (EEGE) to form the PS and PI with both an active ω‐hydroxyl group and an ω′‐ethoxyethyl‐protected hydroxyl group, respectively. After these two hydroxyl groups were selectively modified to propargyl and 2‐bromoisobutyryl group for PS, the resulted PS was used as macroinitiator for ATRP of tBA monomer and the diblock copolymer PS‐b‐PtBA with a propargyl group at the junction point was achieved. Then, using the functionalized PI as macroinitiator for ROP of EO monomer and bromoethane as blocking agent, the diblock copolymer PI‐b‐PEO with a protected hydroxyl group at the conjunction point was synthesized. After the hydrolysis, the recovered hydroxyl group of PI‐b‐PEO was modified to bromoacetyl and then azide group successively. Finally, the “click” chemistry between them was proceeded smoothly. The obtained star‐shaped quarterpolymers and intermediates were characterized by 1H NMR, FT‐IR, and SEC in detail. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2154–2166, 2008  相似文献   

9.
A combination of nitroxide‐mediated radical polymerization and living anionic polymerization was used to synthesize a series of well‐defined graft (co)polymers with “V‐shaped” and “Y‐shaped” branches. The polymer main chain is a copolymer of styrene and p‐chloromethylstyrene (PS‐co‐PCMS) prepared via nitroxide‐mediated radical polymerization. The V‐shaped branches were prepared through coupling reaction of polystyrene macromonomer, carrying 1,1‐diphenylethylene terminus, with polystyryllithium or polyisoprenyllithium. The Y‐shaped branches were prepared throughfurther polymerization initiated by the V‐shaped anions. The obtained branches, carrying a living anion at the middle (V‐shaped) or at the end of the third segment (Y‐shaped), were coupled in situ with pendent benzyl chloride of PS‐co‐PCMS to form the target graft (co)polymers. The purified graft (co)polymers were analyzed by size exclusion chromatography equipped with a multiangle light scattering detector and a viscometer. The result shows that the viscosities and radii of gyration of the branched polymers are remarkably smaller than those of linear polystyrene. In addition, V‐shaped product adopts a more compact conformation in dilute solution than the Y‐shaped analogy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4013–4025, 2007  相似文献   

10.
The facile and efficient one‐pot synthesis of monodisperse, highly crosslinked, and “living” functional copolymer microspheres by the ambient temperature iniferter‐induced “living” radical precipitation polymerization (ILRPP) is described for the first time. The simple introduction of iniferter‐induced “living” radical polymerization (ILRP) mechanism into precipitation polymerization system, together with the use of ethanol solvent, allows the direct generation of such uniform functional copolymer microspheres. The polymerization parameters (including monomer loading, iniferter concentration, molar ratio of crosslinker to monovinyl comonomer, and polymerization time and scale) showed much influence on the morphologies of the resulting copolymer microspheres, thus permitting the convenient tailoring of the particle sizes by easily tuning the reaction conditions. In particular, monodisperse poly(4‐vinylpyridine‐co‐ethylene glycol dimethacrylate) microspheres were prepared by the ambient temperature ILRPP even at a high monomer loading of 18 vol %. The general applicability of the ambient temperature ILRPP was confirmed by the preparation of uniform copolymer microspheres with incorporated glycidyl methacrylate. Moreover, the “livingness” of the resulting polymer microspheres was verified by their direct grafting of hydrophilic polymer brushes via surface‐initiated ILRP. Furthermore, a “grafting from” particle growth mechanism was proposed for ILRPP, which is considerably different from the “grafting to” particle growth mechanism in the traditional precipitation polymerization. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

11.
Cationic substitutionally inert cyclometalated ruthenium (II) and osmium (II) complexes, ([Mt(o‐C6H4‐2‐py)(LL)2]PF6), where LL‐1,10‐phenanthroline (phen) or 2,2′‐bipyridine (bipy), were used for radical polymerization of styrene. Gradual modification of the complexes within the series allowed comparison of the catalytic activity and the redox properties. There was no correlation between the reducing powers of the complexes and their catalytic activities. The osmium compound of the lowest reduction potential was not active. All the ruthenium complexes catalyzed the polymerization of styrene in a controlled manner; but the level of control and the catalytic activity were different under the same polymerization conditions. [Ru(o‐C6H4‐2‐py)(phen)2]PF6 demonstrated the best catalytic performance though its redox potential was the highest. It catalyzed the “living” polymerization with a reasonable rate at a catalyst‐to‐initiator ratio of 0.1. 1 equiv. of Al(OiPr)3 accelerated the polymerization and improved the control, but higher amount of Al(OiPr)3 did not speed up the polymerization and moved the process into the uncontrollable regime. Under the most optimal conditions, the controlled polymerization occurs fast without any additive and the catalyst degradation. Added free ligands inhibited the polymerization suggesting that the catalytically active ruthenium intermediates are generated via the reversible dechelation of bidentate phen or bipy ligands. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3814–3828, 2009  相似文献   

12.
The copper (I)‐catalyzed azide‐alkyne cycloaddition “click” reaction was successfully applied to prepare well‐defined 3, 6, and 12‐arms polystyrene and polyethylene glycol stars. This study focused particularly on making “perfect” star polymers with an exact number of arms, as well as developing techniques for their purification. Various methods of characterization confirmed the star polymers high purity, and the structural uniformity of the generated star polymers. In particular, matrix‐assisted laser desorption ionization‐time‐of‐flight mass spectrometry revealed the quantitative transformation of the end groups on the linear polymer precursors and confirmed their quantitative coupling to the dendritic cores to yield star polymers with an exact number of arms. In addition to preparing well‐defined polystyrene and poly(ethylene glycol)homopolymer stars, this technique was also successfully applied to amphiphilic, PCL‐b‐PEG star polymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
A small quantity of 10-methylphenothiazine cation radical (MPT.+), electrochemically prepared and stocked in acetonitrile solution, initiated cationic polymerizations of n-butyl, t-butyl, and 2-methoxyethyl vinyl ethers and p-methoxystyrene, while no initiation occurred for phenyl vinyl ether, styrene, methyl methacrylate, and phenyl glycidyl ether. 1H-NMR studies of oligomers and low molecular weight compounds isolated from the reaction mixture for the polymerization of t-butyl vinyl ether in the presence of a small amount of D2O indicated that electron transfer from the monomer to MPT.+ was involved in the initiation step. 1H- and 13C-NMR and MO calculation implied that monomers with higher electron densities on the vinyl groups and with lower ionization potentials were more susceptible to the initiation of MPT.+. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
A metal complex, cobalt(II) 2‐ethylhexanoate (CEH), was added to the system of thermal‐initiated reversible addition‐fragmentation chain transfer (RAFT) polymerization of methyl methacrylate (MMA) with 2‐cyanoprop‐2‐yl 1‐dithionaphthalate (CPDN) as the RAFT agent at 115 °C. The polymerization rate was remarkably enhanced in the presence of CEH in comparison with that in the absence of CEH, and the increase of the CPDN concentration also accelerated the rate of polymerization. The polymerization in the concurrence of CPDN and CEH demonstrated the characters of “living”/controlled free radical polymerization: the number‐average molecular weights (Mn) increasing linearly with monomer conversion, narrow molecular weight distributions (Mw/Mn) and obtained PMMA end‐capped with the CPDN moieties. Meanwhile, CEH can also accelerate the rate of RAFT polymerization of MMA using the PMMA as macro‐RAFT agent instead of CPDN. Similar polymerization profiles were obtained when copper (I) bromide (CuBr)/N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine was used instead of CEH. Extensive experiments in the presence of butyl methacrylate, bis(cyclopentadienyl) cobalt(II) and cumyl dithionaphthalenoate were also conducted; similar results as those of MMA/CPDN/CEH system were obtained. A transition of the polymerization mechanism, from RAFT process without CEH addition to atom transfer radical polymerization in the presence of CEH, was possibly responsible for polymerization profiles. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5722–5730, 2007  相似文献   

15.
16.
17.
A “coupling to” approach was developed for the synthesis of hybrid dendritic–linear block copolymers. Fréchet‐type polyether dendrons were prepared by the convergent growth approach and coupled with well‐defined functionalized polystyrene backbones prepared by living free radical procedures. The subtle interplay between the degree of functionalization present in the backbone and the size of the dendritic fragment led to incomplete reactions as steric crowding along the backbone increased. This resulted in globular hybrid macromolecules instead of the extended rods typically formed from the polymerization of dendritic macromonomers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1033–1044, 2000  相似文献   

18.
The living free radical polymerizations of three “less activated” monomers (LAMs), vinyl acetate, N‐vinylcarbazole, and N‐vinylpyrrolidone, were successfully achieved in the presence of a disulfide, isopropylxanthic disulfide (DIP), using 2,2′‐azoisobutyronitrile (AIBN) as the initiator. The living behaviors of polymerizations of LAMs are evidenced by first‐order kinetic plots and linear increase of molecular weights (Mns) of the polymers with monomer conversions, while keeping the relatively low molecular weight distributions, respectively. The effects of reaction temperatures and molar ratios of components on the polymerization were also investigated in detail. The polymerization proceeded with macromolecular design via interchange of xanthate process, where xanthate formed in situ from reaction of AIBN and DIP. The architectures of the polymers obtained were characterized by GPC, 1H NMR, UV–vis, and MALDI‐TOF‐MS spectra, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

19.
A pyrrolopyrazine‐thione derived from oltipraz, a compound that has been investigated as a chemopreventive agent, affords radicals in the presence of thiols and oxygen via a redox cycle, an attribute that suggests its suitability as an initiator for oxygen‐mediated polymerization. Here, we explore the utilization of this pyrrolopyrazine‐thione, generated in situ from a precursor, as an initiator for the radical‐mediated thiol–ene polymerization. While the pyrrolopyrazine‐thione was shown to be capable of generating radicals in the presence of atmospheric oxygen and thiol groups, the reaction extents achievable were lower than desired owing to the presence of unwanted side reactions that would quench radical production and, subsequently, suppress polymerization. Moreover, we found that complex interactions between the pyrrolopyrazine‐thione, its precursor, oxygen, and thiol groups determine whether or not the quenching reaction dominates over those favorable to polymerization. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1373–1382  相似文献   

20.
A general method for the transformation of “living” carbocationic into “living” radical polymerization, without any modification of chain ends, is reported for the preparation of ABA block copolymers. For example, α,ω-difunctional polyisobutene, capped with several units of styrene, Cl-St-PIB-St-Cl, prepared cationically (Mn = 7800, Mw/Mn = 1.31) was used as an efficient difunctional macroinitiator for homogeneous “living” atom transfer radical polymerization to prepare triblock copolymers with styrene, PSt-PIB-PSt (Mn = 28,800, Mw/Mn = 1.14), methyl acrylate, PMA-PIB-PMA (Mn = 31,810, Mw/Mn = 1.42), isobornyl acrylate, PIBA-PIB-PIBA (Mn = 33,500, Mw/Mn = 1.21), and methyl methacrylate, PMMA-PIB-PMMA (Mn = 33,500, Mw/Mn = 1.47). © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3595–3601, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号