首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Dilute solution viscosity and osmotic pressure measurements were performed on polystyrene (PS), polybutadiene (PB), polystyrene–polybutadiene (SB) diblock and polystyrene–polybutadiene (SBS) triblock copolymers. Anionic polymerization was used in such a way that the molecular weight of the PS block was kept constant (ca. 10 000), while the molecular weight of the PB block varied from 18000 to 450000. The measurements were carried out at a fixed temperature of 34.20°C in three solvents, namely toluene, a good solvent for PS as well as for PB, dioxane, which is a good solvent for PS and almost a theta solvent for PB, and cyclohexane, which is nearly a theta solvent for PS and a good solvent for PB. The compositions of SB and SBS, as derived from kinetic data agree with ultraviolet measurements in CHCl3 solutions. The viscosity and osmotic pressure results indicate that the properties of SB and SBS are similar. Their intrinsic viscosities and second virial coefficients can be calculated from their chemical compositions, molecular weight, properties of parent polymers, and values of the interaction parameter \documentclass{article}\pagestyle{empty}\begin{document}$\bar \beta _{{\rm SB}}$\end{document} between styrene and butadiene units, for molecular weights not exceeding approximately 105. The magnitude of \documentclass{article}\pagestyle{empty}\begin{document}$\bar \beta _{{\rm SB}} $\end{document} varies with the solvent. The results suggest that the domains of the PS and PB blocks overlap to a great extent.  相似文献   

2.
Molecular motions of hydrophobic–hydrophilic water-soluble block copolymers in solution were investigated by high-resolution proton magnetic resonance (NMR). Samples studied include block copolymers of polystyrene–poly(ethylene oxide), polybutadiene–poly(ethylene oxide), and poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide). NMR measurements were carried out varying molecular weight, temperature, and solvent composition. For AB copolymers of polystyrene and poly(ethylene oxide), two peaks caused by the phenyl protons of low-molecular-weight (M?n = 3,300) copolymer were clearly resolved in D2O at 100°C, but the phenyl proton peaks of high-molecular-weight (M?n = 13,500 and 36,000) copolymers were too broad to observe in the same solvent, even at 100°C. It is concluded that polystyrene blocks are more mobile in low-molecular-weight copolymer in water than in high-molecular-weight copolymer in the same solvent because the molecular weight of the polystyrene block of the low-molecular-weight copolymer is itself small. In the mixed solvent D2O and deuterated tetrahydrofuran (THF-d8), two peaks caused by the phenyl protons of the high-molecular-weight (M?n = 36,000) copolymer were clearly resolved at 67°C. It is thought that the molecular motions of the polystyrene blocks are activated by the interaction between these blocks and THF in the mixed solvent.  相似文献   

3.
Styrene–acrylonitrile (St–AN) copolymers of three compositions—27.4 mole-% (SA1); 38.5 mole-% (SA2); and 47.5 mole-% (SA3) acrylonitrile—and styrene–methyl methacrylate (St–MMA) copolymer (SM) of 46.5 mole-% methyl methacrylate were prepared by bulk polymerization at 60°C with benzoyl peroxide as the initiator, and were then fractionated. The molecular weights of unfractionated and fractionated samples were determined by light scattering in a number of solvents. The [η] versus M?w relations at 30°C were established for SA1, SA2, SM, and polystyrene (PSt) in ethyl acetate (EAc), dimethyl formamide (DMF), and γ-butyrolactone (γ-BL), and for SA3 in methyl ethyl ketone (MEK), DMF, and γ-BL. Second virial coefficients A2 and the Huggins constant were determined. From values of A2 and the exponent a of the Mark–Houwink relation it is seen that the solvent power for samples SA1, SA2, and PSt is in the order EAc < γ-BL < DMF, while for sample SA3 the solvent power is in the order MEK < γ-BL < DMF. The solvent power decreases with an increase in AN content. The solvent power of the three solvents used for SM copolymer sample is practically the same within experimental errors. From the a values it is concluded that in a given solvent the copolymer chains are more extended than the corresponding homopolymers.  相似文献   

4.
To investigate the solution properties of polyethylene, which has the simplest structure of the vinyl polymers, experiments were made with a magnetically suspended equilibrium ultracentrifuge. Preliminary studies were carried out with a polystyrene–chloroform system at 25°C. and a polystyrene–methylcyclohexane system at 68°C. (which is close to the theta temperature) in order to check the difficulties involved in the flotation equilibrium in the former case and the high temperature measurement in the latter. However, no trouble was encountered in either system, and the results were discussed and compared with earlier results for polystyrene solutions. It was found that chloroform is a good solvent for polystyrene, and the measured weight-average molecular weight is somewhat smaller than the value obtained in a theta solvent. After overcoming some technical difficulties involved in studies at higher temperatures, we carried out experiments on polyethylene in α-chloronaphthalene at 130°C. The results are considered reasonable by comparison with results obtained by other methods. The sample employed, Marlex 50 of melt index 0.7, has a wide molecular weight distribution: i.e., Mz/Mw = 5.2 and Mz+1/Mz = 2.4.  相似文献   

5.
The synthesis of well-defined, nearly monodispersed, 3-miktoarm (from the greek word μlkτós meaning mixed) star copolymer of the A2B type is described. A and B is either polystyrene (PS), polybutadiene (PBd), or polyisoprene (PI). The sequential controlled addition of living anionic B and A chains to methyltrichlorosilane leads to narrow molecular weight distribution miktoarm star copolymers with homogeneous composition. Characterization was carried out by size exclusion chromatography, low-angle laser light scattering, laser differential refractometry, membrane and vapor pressure osmometry, nuclear magnetic resonance and ultraviolet spectroscopy. Analysis of [η], RH and Rv of the A2B and one A2B2 miktoarm copolymers, suggests that a small expansion of the copolymer occurs either in a good solvent for both species or in a Θ solvent for one of them, as compared with the corresponding star homopolymers. This is in contrast to results obtained on linear block copolymers, and is due to the increased occurrence of heterocontacts in the miktoarm starshaped architecture. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
The temperature ΘA2 at which the second virial coefficient A2 is zero for ring polystyrenes is 28.5°C in cyclohexane, independent of molecular weight in the range 2 × 104 to 4.5 × 105. This cannot be explained solely by the Candau–Rempp–Benoit theory, which takes into account the effect of segment density on ΘA2 The radius of gyration of a ring is found to be approximately one-half that of a linear polymer with the same molecular weight. The intrinsic viscosities [η] and intrinsic translational friction coefficients [f] of ring polystyrenes with molecular weights ranging from 7 × 103 to 4.5 × 105 have been measured in cyclohexane at 34.5°C (Θ, the Flory theta temperature for linear polystyrenes) and in toluene (a good solvent). The results are compared with those for linear polystyrene. It is found that the Mark–Houwink exponent is less than one-half in cyclohexane at Θ. In toluene it is 0.67 compared to 0.73 for linear polystyrene. The hydrodynamic measurements suggest that large rings are less expanded than the linear polymers with the same molecular weight, contrary to many predictions.  相似文献   

7.
A unique diblock copolymer ring and its linear triblock copolymer precursor composed of polystyrene and polydimethylsiloxane have been characterized by static and dynamic light scattering in dilute solution. The measurements were carried out with cyclohexane as the solvent over a temperature range of 12–35°C. Cyclohexane has the useful property that it is nearly isorefractive with the PDMS so that the PDMS block segments are invisible to the light-scattering technique and it is a theta solvent for polystyrene at 34.5°C. The block polymers in this work contain 35.1 wt % of styrene as determined by proton NMR. In the linear triblock polymer, the polystyrene is the center block with PDMS blocks on each side. Static light scattering measurements give 4.31 × 104 for the average molecular weight of the whole polymer. Light scattering also shows that the apparent theta temperature for the linear triblock is shifted by 15°C to a value of 20°C at which point the second virial coefficient drops sharply and phase separation begins to induce aggregation. The diblock ring, however, shows a strongly positive second virial coefficient and no aggregation even at 12°C which is the limit of these experiments. The diffusion coefficients of cyclic diblock (Dc) and linear triblock copolymer (D1) are measured by dynamic light scattering. The ratio of diffusion coefficients of cyclic and linear copolymers at 14.9°C and 30°C are Dc/Dl = 1.13 and 1.107 respectively. These compare well with prediction of 1.18 for this ratio from consideration of the hydrodynamics of matched linear and cyclic polymer chains. Dynamic light scattering quantitatively confirms that the linear copolymer experiences a solvent quality change near 20°C but the cyclic polymer remains in good solvent over the entire experimental temperature range. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
Interactions of water-soluble AB block copolymers of polystyrene and poly(ethylene oxide) with sodium lauryl sulfate (SLS) in aqueous solution were investigated by high-resolution proton magnetic resonance (NMR). The viscosity in aqueous SLS solution was also measured. From the NMR results in D2O, it appears that molecular motions of the polystyrene blocks of the copolymer in aqueous solution are activated by interaction between the polystyrene blocks and the added SLS. From solution viscosity, on the other hand, it is apparent that a complex is formed between the copolymer and SLS and that it exhibits typical polyelectrolyte properties. The polyelectrolyte character is attributable largely to intrachain repulsions between like charges of the SLS anions adsorbed on the poly(ethylene oxide) blocks of the copolymers since the polystyrene blocks are insoluble in water and the styrene content is less than 10%.  相似文献   

9.
Crosslinked polystyrene particles were prepared by Friedel–Crafts suspension crosslinking of polystyrene using 2,4-dichloromethyl-2,5-dimethyl benzene as crosslinking agent. The polymer was dissolved in nitrobenzene and reaction occurred in a 70 wt % aqueous solution of ZnCl2 with poly(vinyl alcohol) as a suspending agent. The spherical particles produced were swollen in toluene, chloroform, and tetrahydrofuran to determine their equilbrium polystyrene volume fraction. Analysis of the crosslinked macromolecular structure gave values of number-average molecular weight between crosslinks of M?c = 900–5900 increasing as the nominal crosslinking ratio X decreased from 0.75 to 0.0625 mol of crosslinking agent per mole of polystyrene repeating unit. Porosimetric analysis contributed to the understanding of the importance of the pore structure for swelling behavior.  相似文献   

10.
New linear and three-arm star thermoplastic elastomers (TPEs) comprising a rubbery polysobutylene (PIB) midblock flanked by glass polystyrene (PSt) blocks have been synthesized by living carbocationic polymerization in the presence of select additives by sequential monomer addition. First, isobutylene (IB) was polymerized by bi- and trifunctional tert-ether (dicumyl- and tricumyl methoxy) initiators in conjunction with TiCl4 conintiator in CH3Cl/methylcyclohexane (MeCHx) (40/60 v/v) solvent mixtures at ?80°C. After the living, narrow molecular weight, distribution PIB (M?w/M?n = 1.1-1.2) has reached the desired molecular weight, styrene (St) together with an electron pair donor (ED) and a proton trap (di-tert-butylpyridine, DtBP) were added to block PSt from the living chain ends. Uncontrolled initiation by protic impurities that produces PSt contamination is prevented by the use of DtBP. PSt-PIB-PSt blocks obtained in the absence of additives are contaminated by homopolymer and /or diblocks due to inefficient blocking and initiation by protic impurities, and exhibit poor physical properties. In contrast in the presence of the strong ED N,N-dimethylacetamide (DMA) and DtBP the blocking of St from living PIB chain occurs efficiently and block copolymers exhibiting good mechanical properties can be prepared. Virgin TPEs can be repeatedly compression molded without deterioration of physical properties. The products exhibit a low and a high temperature Tg characteristic of phase separated PIB and PSt domains. Transmission electron microscopy of linear triblocks containing ~ 34 wt % PSt also indicates microphase separation and suggests PSt rods dispersed in a PIB matrix.  相似文献   

11.
It is shown that the recently developed scaling theory for the second virial coefficient, A2, of dilute solutions of polymers with non-uniform molecular weight distributions in a good solvent is able to explain in principle all seemingly contradictory observations reported in the literature, in contrast to all other theories proposed so far.  相似文献   

12.
Summary: Pulse field gradient‐NMR (PFG‐NMR) spectroscopy is determined to be a more suitable method for the investigation of self‐association processes in multi‐component (co)polymer systems than light scattering methods. Here the co‐micellization of mixtures of the diblock copolymer polystyrene‐block‐(hydrogenated polyisoprene) (PS‐HPI) and the triblock copolymer polystyrene‐block‐(hydrogenated polybutadiene)‐block‐polystyrene (PS‐HPB‐PS) in decane is investigated by PFG‐NMR spectroscopy and the results compared to those experimentally determined by static (SLS) and dynamic (DLS) light scattering. As expected, diffusion coefficients determined by PFG‐NMR spectroscopy are systematically lower than those from DLS. The PFG‐NMR measurements provided higher values of cequation/tex2gif-stack-1.gif(X)/ctot than the model calculations, illustrating that the basic assumption used in the calculations, i.e., that the number concentration of co‐micelles in mixed solutions follows the dilution with a triblock copolymer solution, 1 − X, is not fully valid at high X (weight fraction of PS‐HPB) values.

Comparison of PFG‐NMR spectroscopy and SLS (cequation/tex2gif-stack-2.gif/ctot = equilibrium concentration of free PS‐HPB‐PS over the total concentration of copolymers in solution, X = weight fraction of PS‐HPB).  相似文献   


13.
The self‐diffusion of styrene, polystyrene, and 2,2′‐azobisisobutyronitrile has been determined in the bulk polymerization of styrene with pulsed‐gradient spin‐echo nuclear magnetic resonance at 25 °C. Data on small molecules are discussed with respect to recent diffusion models. They can fit self‐diffusion coefficient data of small molecules in dilute or semidilute polymer solutions; in concentrated solutions, however, there is a breakdown. A semiempirical model based on scaling laws is used to describe the self‐diffusion of styrene and 2,2′‐azobisisobutyronitrile over the whole range of concentrations studied. The dependence of the polystyrene self‐diffusion coefficient on the polymer concentration is described with a stretched exponential function, D = D0 exp(?αcν), where α depends on the molecular weight of the polymer and ν depends on the kind of solvent. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1605–1614, 2003  相似文献   

14.
Semidilute solution of cotton lint (CC1) in 8 wt % LiCl/N,N‐dimethylacetamide was investigated using static light scattering (SLS) and rheological measurements. The reduced osmotic modulus estimated by SLS measurements for CC1 solutions are proportional to c1.16 in the semidilute region. From the exponent of 1.16, de Gennes' scaling theory derives the relationship between radius of gyration, Rg, and molecular weight, Mw, of CC1 as RgM0.62 This corresponds to the Mark‐Houwink‐Sakurada exponent of 0.86. This exponent is very close to that estimated from scaling analysis of zero shear rate viscosity, that is 0.85. Apparent radius of gyration, Rg,app, estimated by SLS measurements for CC1 solutions are proportional to c?0.5 in the semidilute region. Rg,app indicates the mesh size of polymer entanglement in the semidilute region. On the assumption of the Gaussian behavior of CC1 molecule in the semidilute region, the exponent of ?0.5 gives the relationship between the molar mass between entanglements, Me, and c as following relationship: Mec?1. This agrees with the concentration dependence on plateau modulus estimated from the dynamic viscoelastic measurements. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2155–2160, 2006  相似文献   

15.
“Regular” sequence copolymers having the structure {[? CH2? C(CH3)(C6H5)? ]m(CH2? CH2)n}p with relatively small values of m and n were prepared by means of “living” polymerization techniques. The intrinsic viscosities of fractions of these copolymers were obtained in various solvents including a theta solvent. The molecular weights of these fractions were determined by the Archibald ultracentrifugal method. The results show that the intrinsic viscosity–molecular weight relations of the regular sequence copolymers are affected not only by the average composition of the copolymer, but also by the sequence length in the copolymer molecule. It is suggested that the effective conformation of a chain element in the copolymer is not always the same as that in the homopolymer.  相似文献   

16.
Photocrosslinkable poly(vinylbenzophenone)‐containing polymers were synthesized via a one‐step, Friedel–Crafts benzoylation of polystyrene‐containing starting materials [including polystyrene, polystyrene‐block‐poly(tert‐butyl acrylate), polystyrene‐block‐poly(ethylene oxide), polystyrene‐block‐poly(methyl methacrylate), and polystyrene‐block‐poly(n‐butyl acrylate)] with benzoyl trifluoromethanesulfonate as a benzoylation reagent. The use of this mild reagent (which required no added Lewis acid) permitted polymers with well‐defined compositions and narrow molecular weight distributions to be synthesized. Micelles formed from one of these benzoylated polymers, [polystyrene0.25co‐poly(vinylbenzophenone)0.75]115block‐poly(acrylic acid)14, were then fixed by the irradiation of the micelle cores with UV light. As the irradiation time was increased, the pendent benzophenone groups crosslinked with other chains in the glassy micelle cores. Dynamic light scattering, spectrofluorimetry, and Fourier transform infrared spectroscopy were all used to verify the progress of the crosslinking reaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2604–2614, 2006  相似文献   

17.
The phase behavior of a styrene–isoprene (SI) diblock copolymer, with block molecular weights of 1.1 × 104 and 2.1 × 104 g/mol, respectively, is examined in the neutral solvent bis(2-ethylhexyl) phthalate (DOP) and the styrene-selective solvent di-n-butyl phthalate (DBP). DBP is a good solvent for PS, but is near a theta solvent for PI at approximately 90°C. Small-angle X-ray scattering (SAXS), rheology, and static birefringence are used to locate and identify order–order (OOT) and order–disorder transitions (ODT); all three techniques gave consistent results. The neat polymer adopts the gyroid (G) phase at low temperatures, with an OOT to hexagonally-packed cylinders (C) at 185°C, and the ODT at 238°C. Upon dilution with the neutral solvent DOP, the C window is diminished, until for a polymer concentration ϕ = 0.65, a direct G to disorder (D) ODT is observed. These results reflect increased stability of the disordered state, based on the different concentration scalings of the interaction parameter, χ, at the OOT and ODT. The OOT follows the dilution approximation, i.e., χOOT ∼ ϕ−1, but the ODT is found to follow a stronger concentration dependence, i.e., χODT ∼ ϕ−1.4, similar to the scaling of ϕ−1.6 found previously for lamellar SI diblocks in toluene and DOP. Addition of the selective solvent DBP produces dramatic changes in the phase behavior relative to DOP and the melt state; these include transitions to lamellar (L) and perforated layer (PL) structures. The observed phase sequences can be understood in terms of trajectories across the SI melt phase map (temperature vs. composition): addition of a neutral solvent or increasing temperature corresponds to a “vertical” trajectory, whereas adding a selective solvent amounts to a “horizontal” trajectory. When the solvent selectivity depends on temperature, as it does for the SI/DBP system, increasing temperature results in a diagonal trajectory. For both neutral and selective solvents the domain spacing, d*, scales with ϕ and χ as anticipated by self-consistent mean-field theory. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 3101–3113, 1998  相似文献   

18.
A series of four well‐defined poly(ferrocenyldimethylsilane) (PFS) samples spanning a molecular weight range of approximately 10,000–100,000 g mol−1 was synthesized by the living anionic polymerization of dimethyl[1]silaferrocenophane initiated with n‐BuLi. The polymers possessed narrow polydispersities and were used to characterize the solution behavior of PFS in tetrahydrofuran (THF). The weight‐average molecular weights (Mw ) of the polymers were determined by low‐angle laser light scattering (LALLS), conventional gel permeation chromatography (GPC), and GPC equipped with a triple detector (refractive index, light scattering, and viscosity). The molecular weight calculated by conventional GPC, with polystyrene standards, underestimated the true value in comparison with LALLS and GPC with the triple detection system. The Mark–Houwink parameter a for PFS in THF was 0.62 (k = 2.5 × 10−4), which is indicative of fairly marginal polymer–solvent interactions. The scaling exponent between the radius of gyration and Mw was 0.54, also consistent with marginal polymer–solvent interactions for PFS in THF. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3032–3041, 2000  相似文献   

19.
Hydrophobic–hydrophilic block copolymers were prepared by “living” anionic polymerization. They consist of polystyrene and poly(ethylene oxide) blocks, and are soluble in water. Their interfacial properties were investigated, employing aqueous solutions. The block copolymers lowered the surface tension of water in analogy with the low molecular weight surfactants such as sodium lauryl sulfate and heptaethylene oxide n-dodecyl ether. Their aqueous solutions exhibited solubilization properties differing from those of polyethylene glycol. Therefore, it is thought that the polystyrene blocks produce solubilization phenomena. In samples of the same styrene content, the precipitation temperature of a high molecular weight copolymer in water was lower than that of a low molecular weight copolymer at the same concentration in the same solvent. The surface tension and precipitation temperature of aqueous solutions seem to be influenced by molecular weight and composition.  相似文献   

20.
This work examined the effect of the pre‐melting temperature (Tmax) on the thermal properties and crystalline structure of four miscible syndiotactic polystyrene (sPS)‐based blends containing 80 wt % sPS. The counterparts for sPS included a high‐molecular‐weight atactic polystyrene [aPS(H)], a medium‐molecular‐weight atactic polystyrene [aPS(M)], a low‐molecular‐weight atactic polystyrene [aPS(L)], and a low‐molecular‐weight poly(styrene‐co‐α‐methyl styrene) [P(S‐co‐αMS)]. According to differential scanning calorimetry measurements, upon nonisothermal melt crystallization, the crystallization of sPS shifted to lower temperatures in the blends, and the shift followed this order of counterpart addition: P(S‐co‐αMS) > aPS(L) > aPS(M) > aPS(H). The change in Tmax (from 285 to 315 °C) influenced the crystallization of sPS in the blends to different degrees, depending on the counterpart's molecular weight and cooling rate. The change in Tmax also affected the complex melting behaviors of pure sPS and an sPS/aPS(H) blend, but it affected those of the other blends to a lesser extent. Microscopy investigations demonstrated that changing Tmax slightly affected the blends' crystalline morphology, but it apparently altered that of pure sPS. Furthermore, the X‐ray diffraction results revealed that the α‐form sPS crystal content in the blends generally decreased with an increase in Tmax, and it decreased with a decrease in the cooling rate as well. The blends showed a lower α‐form content than pure sPS; a counterpart of a lower molecular weight more effectively reduced the formation of α‐form crystals. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2798–2810, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号