首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ethylene/styrene copolymerizations using Cp′TiCl2(O‐2,6‐iPr2C6H3) [Cp′ = Cp* (C5Me5, 1 ), 1,2,4‐Me3C5H2 ( 2 ), tert‐BuC5H4 ( 3 )]‐MAO catalyst systems were explored under various conditions. Complexes 2 and 3 exhibited both high catalytic activities (activity: 504–6810 kg‐polymer/mol‐Ti h) and efficient styrene incorporations at 25, 40°C (ethylene 6 atm), affording relatively high molecular weight poly (ethylene‐co‐styrene)s with unimodal molecular weight distributions as well as with uniform styrene distributions (Mw = 6.12–13.6 × 104, Mw/Mn = 1.50–1.71, styrene 31.7–51.9 mol %). By‐productions of syndiotactic polystyrene (SPS) were observed, when the copolymerizations by 1 – 3 ‐MAO catalyst systems were performed at 55, 70 °C (ethylene 6 atm, SPS 9.0–68.9 wt %); the ratios of the copolymer/SPS were affected by the polymerization temperature, the [styrene]/[ethylene] feed molar ratios in the reaction mixture, and by both the cyclopentadienyl fragment (Cp′) and anionic ancillary donor ligand (L) in Cp′TiCl2(L) (L = Cl, O‐2,6‐iPr2C6H3 or N=CtBu2) employed. Co‐presence of the catalytically‐active species for both the copolymerization and the homopolymerization was thus suggested even in the presence of ethylene; the ratios were influenced by various factors (catalyst precursors, temperature, styrene/ethylene feed molar ratio, etc.). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4162–4174, 2008  相似文献   

2.
Vinyl‐type copolymerization of norbornene (NBE) and 5‐NBE‐2‐yl‐acetate (NBE‐OCOMe) in toluene were investigated using a novel homogeneous catalyst system based on bis(β‐ketonaphthylamino)Ni(II)/B(C6F5)3/AlEt3. The copolymerization behavior as well as the copolymerization conditions, such as the levels of B(C6F5)3 and AlEt3, temperature, and monomer feed ratios, which influence on the copolymerization were examined. Without combination of AlEt3, the catalytic bis(β‐ketonaphthylamino)Ni(II)/B(C6F5)3 exhibited very high catalyst activity for polymerization of NBE. Combination of AlEt3 in catalyst system resulted in low conversion for polymerization of NBE. For copolymerization of NBE and NBE‐OCOMe, involvement of AlEt3 in catalyst is necessary. Slight addition of NBE‐OCOMe in copolymerization of NBE and NBE‐OCOMe gives rise to significant increase of catalyst activity for catalytic system bis(β‐ketonaphthylamino)Ni(II)/B(C6F5)3/AlEt3. Nevertheless, excess increase of the NBE‐OCOMe content in the comonomer feed ratios results in decrease of conversion as well as activity of catalyst. The achieved copolymers were confirmed to be vinyl‐addition copolymers through the analysis of FTIR, 1H NMR, and 13C NMR spectra. 13C NMR studies further revealed the composition of the copolymer and the incorporation rate was 7.6–54.1 mol % ester units at a content of 30–90 mol % of the NBE‐OCOMe in the monomer feeds ratios. TGA analysis results showed that the copolymer exhibited good thermal stability (Td > 410 °C) and failed to observe the glass transitions temperature over 300 °C. The copolymers are confirmed to be noncrystalline by WAXD analysis results and show good solubility in common organic solvents. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3990–4000, 2009  相似文献   

3.
Living copolymerization of ethylene and 1‐octene was carried out at room temperature using the fluorinated FI‐Ti catalyst system, bis[N‐(3‐methylsalicylidene)‐2,3,4,5,6‐pentafluoroanilinato] TiCl2/dried methylaluminoxane, with various 1‐octene concentrations. The comonomer incorporation up to 32.7 mol % was achieved at the 1‐octene feeding ratio of 0.953. The living feature still retained at such a high comonomer level. The copolymer composition drifting was minor in this living copolymerization system despite of a batch process. It was found that the polymerization heterogeneity had a severe effect on the copolymerization kinetics, with the apparent reactivity ratios in slurry significantly different from those in solution. The reactivity ratios were nearly independent of polymerization temperature in the range of 0–35 °C. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

4.
The copolymerization of propylene with 1-butene and 1-pentene at 60°C in the propylene bulk in the presence of the homogeneous isospecific metallocene catalyst of the C2 symmetry rac-Me2Si(4-Ph-2-MeInd)2ZrCl2 activated by polymethylaluminoxane is studied. Copolymers containing up to 30 mol % 1-butene and up to 10 mol % 1-pentene are synthesized. For the copolymerization of the above monomers, reactivity ratios are estimated to be equal to unity, thereby indicating the azeotropic character of the process. It is found that the distribution of comonomer units in the copolymers is close to statistical. For both comonomers, the comonomer effect is observed: an increase in the rate of propylene polymerization after addition of a small amount of a less reactive comonomer. The addition of 1-butene and 1-pentene to polypropylene shows a weak effect on the stereoregularity of chains but causes a marked reduction in the molecular mass of the polymer and changes its thermophysical characteristics and mechanical properties. An X-ray diffraction study of the copolymers is performed.  相似文献   

5.
A series of novel nonmetallocene catalysts with phenoxy‐imine ligands was synthesized by the treatment of phthaldialdehyde, substituted phenol with TiCl4, ZrCl4, and YCl3 in THF. The structures and properties of the catalysts were characterized by 1H NMR and elemental analysis. These catalysts were used for copolymerization of ethylene with acrylonitrile after activated by methylaluminoxane (MAO). The effects of copolymerization temperature, Al/M (M = Ti, Zr, and Y) ratio in mole, concentrations of catalyst and comonomer on the polymerization behaviors were investigated in detail. These results revealed that these catalysts were favorable for copolymerization of ethylene with acrylonitrile. Cat. 3 was the most favorable one for the copolymerization of ethylene with acrylonitrile, and the catalytic activity was up to 2.19 × 104 g PE/mol.Ti.h under the conditions: polymerization temperature of 50 °C, Al/Ti molar ratio of 300, catalyst concentration of 1.0 × 10–4 mol/L, and toluene as solvent. The resultant polymer was characterized by FTIR, cross‐polarization magic angle spinning, 13C NMR, WAXD, GPC, and DSC. The results confirmed that the obtained copolymer featured high‐weight–average molecular weight, narrow molecular weight distribution about 1.61–1.95, and high‐acrylonitrile incorporation up to 2.29 mol %. Melting temperature of the copolymer depended on the content of acrylonitrile incorporation within the copolymer chain. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
Polymerization of ethylene with ball-milled titanium dichloride leads to a completely linear polymer with terminal unsaturation corresponding to approximately one carbon–carbon double bond per molecule. Polymerization rate is first-order in both monomer and catalyst concentration at 140°C. Due to a thermal deactivation of the catalyst, the polymerization rate falls sharply with temperature above 180°C. Propylene and butene-1 will copolymerization with ethylene in this system, propylene more efficiently than butene-1. Evidence for copolymerization of trans-2-butene, but not of the cis-isomer or of isobutene, in trace concentrations is presented. Propylene is homopolymerized to a product low in isotactic content. The significance of the structural and (limited) kinetic data in terms of the mechanism of polymerization are discussed.  相似文献   

7.
High activity ethylene polymerization catalysts have been prepared by the interaction of ethylmagnesium chloride in tetrahydrofuran with high surface area silica, followed by reaction with excess titanium tetrachloride in heptane. The catalysts were tested in ethylene—hexene copolymerization reactions in the presence of AlEt3 at 80°C. For comparison purposes, the copolymerization properties of a similar catalyst prepared without silica were also evaluated. Preparative conditions were identified which provide catalysts that possess high reactivity towards 1-hexane. The silica and the amount of magnesium used in catalyst preparation strongly affect the copolymerization properties of the catalysts. Generally, catalysts prepared with silica showed much higher sensitivity to 1-hexene (effective reactivity ratio r1 = 25–60) while a similar catalyst prepared without silica exhibited an r1 value of 125. Fractionation of the copolymer with a series of boiling solvents showed that all the catalysts exhibit a wide distribution of active centers with respect to reactivity ratios, with the r1 values varying from 5–7 to ca. 200. The width of a the center distribution depends on catalyst composition—it is the narrowest for the catalyst prepared without silica and is the widest for the catalysts with intermediate Ti : Mg ratios.  相似文献   

8.
EPDM terpolymers with ethylidene norbornene as diene monomer could be prepared by means of a soluble Ziegler catalyst formed from biscyclopentadienyl zirconium dimethyl and methylaluminoxane. The overall activities lie between 100 and 1000 kg EPDM/(molZr h bar), obtainable at zirconium concentrations as low as 5 × 10?7 mol/L. After an induction period (0.5–5 h) the polymerization rates increased and then leveled to a value which was constant for several days. From copolymerization kinetics reactivity ratios r12 = 31.5, r21 = 5 × 10?3, and r13 = 3.1 could be derived, and by 13C-NMR spectroscopy r12 · r21 = 0.3 was found (1: ethylene, 2: propylene and 3: ethylidene norbornene). The regiospecifity of the catalyst toward propylene leads exclusively to the formation of head-to-tail enchainments. The diene polymerizes via vinyl polymerization of the cyclic double bond, and the tendency to branching is low. Molecular weights were estimated between 40,000 and 160,000. The average molecular weight distribution of 1.7 is remarkably narrow. Glass transition temperatures of ?60 to ?50°C could be observed. The cure behavior and the physical properties of cured samples were also tested.  相似文献   

9.
The newly synthesized 1‐TiCl (C3 symmetric) and 2‐TiCl (Cs symmetric) precatalysts in combination with MAO polymerized ethylene, cyclic olefins, and copolymerized ethylene/norbornene in good yields. The catalyst with C3 symmetry exhibits moderate catalytic activity and efficient norbornene incorporation for E/NBE copolymerization in the presence of MAO [activity = 360 kg polymer/(mol Ti h), ethylene 1 atm, NBE 5 mmol/mL, 10 min], affording poly(ethylene‐co‐NBE)s with high norbornene contents (42.0%) and the Cs symmetric catalyst showed an activity of 420 kg polymer/(mol Ti h), ethylene 1 atm, NBE 5 mmol/mL affording poly(ethylene‐co‐NBE)s with 33.0% norbornene content. The effect of monomer concentration at ambient temperature and constant Al/Ti ratio for the homo and copolymerization was studied in a detailed manner. We found that apart from the electronic environment around the metal center the steric environment provided by the symmetry of the catalyst systems has a considerable influence on the percentage of norbornene content of the copolymer obtained. We also found that with a given catalyst a variable clearly influencing the copolymer microstructure, hence also the copolymer properties, is the monomer concentration at a given feed ratio. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 444–452, 2008  相似文献   

10.
Abstract

The copolymerization system of styrene (ST) and citraconic (α-methymaleic) anhydride (CA) was found to form semi-alternating copolymers when polymerized with a total monomer concentration of 4 mol/L in CCl4 at 50°C, with alternating copolymers being formed only when the CA mole fraction in feed was greater than 0.9. More than 50% of the linkage configurations at the cyclic CA units in the copolymers were found to be in cis configuration. This, together with the following observations, is consistent with a participation of the electron donor-acceptor (EDA) complex formed between ST and CA: (a) the complex participation model fits best, although only marginally, to the experimental triad mole fraction of alternating sequences; (b) the alternating monomer unit sequences and the cis linkage configuration at the cyclic CA units are more efficiently formed in non polar CCl4 solutions than in polar methy ethyl ketone. The equilibrium constant for the EDA complexation of ST and CA in CCl4 at 23°C is determined to be 0.142 ± 0.015 L/mol.  相似文献   

11.
Catalytic activity of Me2SiCp*NtBuMX2/(CPh3)(B(C6F5)4) [MTi, XCH3 (1); MZr, X=iBu (2)] systems in the ethylene/styrene (E/S) feed was examined. Experimental data revealed high activity for the catalytic system (1) for copolymerization ethylene with styrene, whereas the system with enhanced catalytic activity for ethylene homopolymerization (2) was temporarily blocked in the styrene presence yielding, even at high styrene content, homopolyethylene as the final product. Properties of thus obtained polymers were analyzed. Catalytic system (1) occurred very sensitive to S/E ratio in the comonomers feed. The 10‐fold acceleration for ethylene consumption was shown in two experimental sets conducted at S/E = 1.3 ratio, 1 bar, and 7.5 bar ethylene pressure, respectively. The consequent enhancement in S/E ratio resulted in slowing down both ethylene consumption and catalyst deactivation rates. Atactic polystyrene was formed at high styrene content with the catalyst (1). Catalytic system (1) allowed design of products with the highest styrene content (20 mol %) at low ethylene pressure, moderate temperature, and high S/E ratio. The apparent activation energy estimated from the initial rates of ethylene consumption was 54.6 kJ/mol. Analysis of apparent reactivity factors (rE = 9 and rS = 0.04; rE × rS = 0.4) and 13C‐NMR copolymer spectra revealed an alternating tendency of the comonomers for active center incorporation. DSC measurements showed considerable decrease of melting points and crystallinity even for copolymers with low styrene content. The catalyst produced relatively high–molecular weight copolymers (140–150 kg/mol) even at 80°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1083–1093, 1999  相似文献   

12.
The copolymerization of ethylene and propene was conducted at −40°C with the [ethylene(1-indenyl)(9-fluorenyl)]zirconium dichloride-methylaluminoxane catalyst system, and the microstructure of the resulting copolymers was analyzed in detail by 13C NMR. The content of alternating [EP] sequences increased markedly with an increase in the feed ratio of propene to ethylene. A poly(ethylene-co-propene) with a proportion of [EP] sequences over 95% was thus obtained under appropriate copolymerization conditions. It was also demonstrated that the alternating ethylene-propene copolymer is stereoregular and isotactic.  相似文献   

13.
Homogeneous and silica‐supported Cp2ZrCl2/methylaluminoxane (MAO) catalyst systems have been used for the copolymerization of ethylene with 1‐butene, 1‐hexene, 4‐methylpentene‐1 (4‐MP‐1), and 1‐octene in order to compare the “comonomer effect” obtained with a homogeneous metallocene‐based catalyst system with that obtained using a heterogenized form of the same metallocene‐based catalyst system. The results obtained indicated that at 70 °C there was general rate depression with the homogeneous catalyst system whereas rate enhancement occurred in all copolymerizations carried out with the silica‐supported catalyst system. Rate enhancement was observed for both the homogeneous and the silica‐supported catalyst systems when ethylene/4‐MP‐1 copolymerization was carried out at 50 °C. Active center studies during ethylene/4‐MP‐1 copolymerization indicated that the rate depression during copolymerization using the homogeneous catalyst system at 70 °C was due to a reduction in the active center concentration. However, the increase in polymerization rate when the silica‐supported catalyst system was used at the same temperature resulted from an increase in the propagation rate coefficient. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 267–277, 2008  相似文献   

14.
Complex [Ti(κ2N,O‐{2,6‐F2C6H3N?C(Me)C(H) ?C(CF3) O})2Cl2] ( 1 ) was evaluated as catalyst for living copolymerization of ethylene (E) with norbornene (N) upon activation with dried methylaluminoxane (d‐MAO) at temperatures between 25 and 90 °C. Copolymerization performed at different [N]/[E] feed ratios afforded stereoirregular alternating high molar mass P(E‐co‐N) with narrow molar mass distribution. The living nature of E‐co‐N copolymerization by 1 /d‐MAO was demonstrated by kinetics at 50 °C. This catalyst system was used for the synthesis of block copolymers such as polyethylene (PE)‐block‐P(E‐co‐N) with a crystalline PE block and an amorphous P(E‐co‐N) block as well as P(E‐co‐N)1block‐P(E‐co‐N)2, having different norbornene contents in the segments and thus having different Tg values. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
16.
Highly active catalysts for copolymerization have been prepared by the precipitation of MgCl2/ToCl4 complex with or without high surface area silica. Copolymerization of ethylene and 1-butene has been tested by using the prepared catalysts at various concentrations of 1-butene. The catalytic activities are 20–80 kg/g Ti h. The rate of copolymerization is strongly affected by the addition of 1-butene. The decay rate of copolymerization is first order with respect to time. Analyses of copolymers with solvent extraction, DSC, IR, XRD, and NMR were performed. Ethylene reactivity ratio (k11) for TiCl4/MgCl2/THF catalyst is calculated to be about 26 by NMR spectrum. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
Chain transfer constants to monomer have been measured by an emulsion copolymerization technique at 44°C. The monomer transfer constant (ratio of transfer to propagation rate constants) is 1.9 × 10?5 for styrene polymerization and 0.4 × 10?5 for the methyl methacrylate reaction. Cross-transfer reactions are important in this system; the sum of the cross-transfer constants is 5.8 × 10?5. Reactivity ratios measured in emulsion were r1 (styrene) = 0.44, r2 = 0.46. Those in bulk polymerizations were r1 = 0.45, r2 = 0.48. These sets of values are not significantly different. Monomer feed compcsition in the polymerizing particles is the same as in the monomer droplets in emulsion copolymerization, despite the higher water solubility of methyl methacrylate. The equilibrium monomer concentration in the particles in interval-2 emulsion polymerization was constant and independent of monomer feed composition for feeds containing 0.25–1.0 mole fraction styrene. Radical concentration is estimated to go through a minimum with increasing methyl methacrylate content in the feed. Rates of copolymerization can be calculated a priori when the concentrations of monomers in the polymer particles are known.  相似文献   

18.
The solution copolymerization of ethylene (1) with octene-1 (2) in Isopar E using constrained geometry catalyst system, [C5Me4(SiMe2NtBu)]TiMe2 (CGC-Ti)/tris(pentafluorophenyl)boron (TPFPB)/modified methylaluminoxane (MMAO), has been carried out in a high-temperature, high-pressure continuous stirred-tank reactor (CSTR) at 140°C, 500 psig and with a mean residence time of 4 min. A series of copolymer samples with octene-1 content up to 0.337 mole fraction were synthesized and characterized. The estimated reactivity ratios were r1 = 7.90 and r2 = 0.099. The CGC-Ti showed a higher ability to incorporate high α-olefins than other metallocene catalysts investigated in the literature due to its open structure. The presence of octene-1 lowered the catalyst activity, particularly at octene-1 levels higher than 0.45 mole fraction. Octene-1 was also found to reduce the molecular weight of polymer and broaden the molecular weight distributions. The triad distributions were measured by 13C-NMR. A minor penultimate effect was observed. The penultimate octene-1 unit appeared to slow down monomer insertion rates. A comparison of the propagation rate of octene-1 with the incorporation rate of macromonomer in the homopolymerization of ethylene suggests that the addition of macromonomer is effectively instantaneous after it is generated with diffusion to or from the active center reaction volume playing a minor role. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2949–2957, 1999  相似文献   

19.
The copolymerization of ethylene (E) and norbornene (NB) was investigated using the commercially available and inexpensive catalyst system, cyclopentadienylzirconium trichloride (CpZrCl3)/isobutyl‐modified methylaluminoxane (MMAO), at a moderate polymerization temperature in toluene. For the CpZrCl3 catalyst system activated by aluminoxane with a 40 mol % methyl group and a 60 mol % isobutyl group (MMAO), the quantities of the charged NB and the polymerization temperature significantly affected the molecular weights, polydispersities, and NB contents of the obtained copolymers and the copolymerization activities in all the experiments. As the charged NB increased and thereby the NB/E molar ratio increased, the NB content in the copolymer increased and reached a maximum value of 71 mol %. The CpZrCl3/MMAO ([Al]/[Zr] = 1000) catalyst system with the [NB] of 2.77 mol L?1 and ethylene of 0.70 MPa at 50 °C showed the highest activity of 1690 kg molZr?1 h?1 and molecular weight of 21,100 g mol?1. The 13C NMR analysis showed that the CpZrCl3/MMAO catalyst system produced the E‐NB random copolymer with a number of NB homosequences such as the NN dyad and NNN triad. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7411–7418, 2008  相似文献   

20.
{[2-(dimethylamino)ethyl]cyclopentadienyl}titanium trichloride (CpNTiCl3, 1 ) was activated with methylaluminoxane (MAO) to catalyze polymerizations of ethylene (E), propylene (P), ethylidene norbornene (ENB), vinylcyclohexene (VCH), and 1,4-hexadiene (HD). The dependence of homopolymerization activity ( A ) of 1 /MAO on olefin concentration ([M]n) is n = 2.0 ± 0.5 for E and n = 1.8 ± 0.2 for P. The value of n is 2.4 ± 0.2 for CpTiCl3/MAO catalysis of ethylene polymerization; this system does not polymerize propylene. 1 /MAO catalyzes HD polymerization at one-tenth of A H for 1-hexene, probably because of chelation effects in the HD case. The copolymerization of E and P has reactivity ratios of rE = 6.4 and rP = 0.29 at 20°C, and rErP = 1.9, which suggests 1 /MAO may be a multisite catalyst. The copolymerization activity of CpTiCl3/MAO is 50 times smaller than that of CpNTiCl3/MAO. Terpolymerization of E/P/ENB has A of 105 g of polymer/(mol of Ti h), incorporates up to 14 mol % (∼ 40 wt %) of ENB, and high MW's of 1 to 3 × 105. All of these parameters are surprisingly insensitive to the ENB concentration. The E/P/VCH terpolymerization has comparable A value of (1.3 ± 0.3) × 105 g/(mol of Ti h). The incorporation of VCH in terpolymer increases with increasing [VCH]. Terpolymerization with HD occurs at about one-third of the A of either ENB or VCH; the product HD–EPDM is low in molecular weight and contains less than 4% of HD. These terpolymerization results are compared with those obtained previously for three zirconocene precursors: rac-ethylenebis(1-η5-indenyl)dichlorozirconium ( 6 ), rac-(dimethylsilylene)bis(1-η5-indenyl)dichlorozirconium ( 7 ), and ethylenebis(9-η5-fluorenyl)dichlorozirconium ( 8 ). The last compound is a particularly poor terpolymerization catalyst; it incorporates very little VCH or HD and no ENB at all. 7 /MAO is a better catalyst for E/P/VCH terpolymerization, while 6 /MAO is superior in E/P/HD terpolymerization. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 319–328, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号