首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Copolyesters containing rigid segments (naphthalene and terephthalene) and flexible seg-ments (aliphatic diol) structure were synthesized from DMN/DMT/EG (2,6-dimethyl naphthalate/1,4-dimethyl terephthalate/ethylene glycol) ternary monomers with various mole ratios. Copolyesters having intrinsic viscosities of 0.52–0.65 dL/g were obtained by melt polycondensation in the presence of metallic catalysts. The effect of reaction tem-perature and time on the formation of the copolyesters was investigated to obtain an op-timum condition for copolyester manufacturing. The optimum condition for PNT (poly-ethylene naphthalate terephthalate) copolyester manufacturing is the transesterification under nitrogen atmosphere for 4 h at a temperature of 185±2°C followed by polymerization under 2 mm Hg for 2 h at a temperature of 280°C. Most copolyesters have better solubilities than poly(ethylene naphthalate) (PEN) and poly(ethylene terephthalate) (PET) in various solvents. The effect of the starting mole ratio of DMN, DMT, and EG on the thermal properties of the resulted copolyesters was also investigated using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Glass transition temperatures of copolyesters were in the range of 70.7–115.2°C, and 10% weight loss in nitrogen were all above 426°C. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
A series of thermoplastic poly(butylene-co-hydroquinone bis(2-hydroxyethyl)ether terephthalates) (PBHT), with different molar ratios of hydroquinone bis(2-hydroxyethyl)ether (HQEE)/1,4-butanediol 9/91, 18/82 and 27/73, were synthesized via melt polycondensation. The compositions, thermodynamics and crystallization properties of the obtained copolyesters were characterized in detail by 1H NMR, differential scanning calorimeters (DSC), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). These results showed that the PBHTs were successfully synthesized, and the incorporation of the HQEE group significantly improved thermal properties of the polymers. However, HQEE did not change the crystal structure of PBT. The Tm values of the copolymers decreased (from 208?°C to 174?°C) with increasing content of HQEE segments, on the contrary, Tg values increased (from 37?°C to 43?°C). The temperatures for 5% weight loss did not decrease and appeared at a range of 373–377?°C.  相似文献   

3.
Two series of novel fluorinated aromatic polyamides were prepared from 1,1‐bis[4‐(4‐carboxyphenoxy)phenyl]‐1‐phenyl‐2,2,2‐trifluoroethane with various aromatic diamines or from 1,1‐bis[4‐(4‐aminophenoxy)phenyl]‐1‐phenyl‐2,2,2‐trifluoroethane with various aromatic dicarboxylic acids with the phosphorylation polyamidation technique. These polyamides had inherent viscosities ranging from 0.51 to 1.54 dL/g that corresponded to weight‐average and number‐average molecular weights (by gel permeation chromatography) of 36,200–80,000 and 17,200–64,300, respectively. All polymers were highly soluble in aprotic polar solvents, such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylacetamide, and some could even be dissolved in less‐polar solvents like tetrahydrofuran. The flexible and tough films cast from the polymer solutions possessed tensile strengths of 76–94 MPa and initial moduli of 1.70–2.22 GPa. Glass‐transition temperatures (Tg's) and softening temperatures of these polyamides were observed in the range of 185–268 °C by differential scanning calorimetry or thermomechanical analysis. Decomposition temperatures (Td's) for 10% weight loss all occurred above 500 °C in both nitrogen and air atmospheres. Almost all the fluorinated polyamides displayed relatively higher Tg and Td values than the corresponding nonfluorinated analogues. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 420–431, 2003  相似文献   

4.
Four series of poly(o-hydroxy amide)s were prepared by the low-temperature solution polycondensation of the bis(ether benzoyl chloride)s extended from hydroquinone and its methyl-, tert-butyl-, or phenyl-substituted derivatives with three bis(o-aminophenol)s. Most of the poly(o-hydroxy amide)s displayed an amorphous nature, were readily soluble in various polar solvents such as N,N-dimethylacetamide (DMAc), and could be solution-cast into flexible and tough films. These poly(o-hydroxy amide)s had glass transition temperatures (Tg) in the range of 152–185°C and could be thermally cyclodehydrated into the corresponding polybenzoxazoles approximately in the region of 200–400°C, as evidenced by the DSC thermograms. The thermally converted benzoxazole polymers exhibited Tgs in the range of 215–247°C and did not show significant weight loss before 500°C either in nitrogen or in air. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2129–2136, 1999  相似文献   

5.
A bis(ether anhydride) monomer, 1,1‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]cyclohexane dianhydride ( IV‐A ), was synthesized from the nitro displacement of 4‐nitrophthalodinitrile by the phenoxide ion of 1,1‐bis(4‐hydroxyphenyl)cyclohexane ( I‐A ), followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and dehydration of the resulting bis(ether acid). A novel series of organosoluble poly(ether imide)s ( VI a–i )(PEIs) bearing cyclohexylidene cardo groups was prepared from the bis(ether anhydride) IV‐A with various aromatic diamines V a–i via a conventional two‐stage process. The PEIs had inherent viscosities in the range of 0.48–1.02 dL/g and afforded flexible and tough films by solution‐casting because of their good solubilities in organic solvents. Most PEIs showed yield points in the range of 89–102 MPa at stress‐strain curves and had tensile strengths of 78–103 MPa, elongations at breaks of 8–62%, and initial moduli of 1.8–2.2 GPa. The glass‐transition temperatures (Tg's) of these PEIs were recorded between 200–234 °C. Decomposition temperatures of 10% weight loss all occurred above 490 °C in both air and nitrogen atmospheres, and their residues were more than 43% at 800 °C in nitrogen atmosphere. The cyclohexane cardo‐based PEIs exhibited relatively higher Tg's, better solubilities in organic solvents, and better tensile properties as compared with the corresponding Ultem® PEI system. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 788–799, 2001  相似文献   

6.
Mixtures of the dimethyl esters of adipic acid and 2,3:4,5‐di‐O‐methylene‐galactaric acid (Galx) were made to react in the melt with either 1,6‐hexanediol or 1,12‐dodecanediol to produce linear polycyclic copolyesters with aldarate unit contents varying from 10 up to 90 mole %. The copolyesters had weight–average molecular weights in the ~35,000–45,000 g mol?1 range and a random microstructure, and were thermally stable up to nearly 300 °C. They displayed Tg in the ‐50 to ‐7 °C range with values largely increasing with the content in galactarate units. All the copolyesters were semicrystalline with Tm between 20 and 90 °C but only those made from 1,12‐dodecanediol were able to crystallize from the melt at a crystallization rate that decreased as the contents in the two comonomers approached each other. Copolyesters containing minor amounts of galactarate units adopted the crystal structure characteristic of aliphatic polyesters but a new crystal polymorph was formed when the cyclic sugar units became the majority. Stress–strain parameters were sensitively affected by composition of the copolyesters with the mechanical behavior changing from flexible/ductile to stiff/brittle with the replacement of adipate units by the galactarate units. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
Two isomers of commercial 4,4′-(4,4′-isopropylidenediphenoxy) bis(phthalic anhydride) (4,4′-BPADA), that is, 3,4′-(4,4′-isopropylidenediphenoxy) bis(phthalic anhydride) (3,4′-BPADA) and 3,3′-(4,4′-isopropylidenediphenoxy) bis(phthalic anhydride) (3,3′-BPADA), were synthesized through aromatic nucleophilic substitution from nitrophthalonitrile and bisphenol A. 3,4′-BPADA was first synthesized from two intermediates, that is, 3-(4-[4-hydroxyphenylisopropylidene] phenoxy) phthalonitrile (3-BPADN) and 3,4′-(4,4′-isopropylidenediphenoxy) bis(phthalonitrile) (3,4′-BPATN). The corresponding three series of polyetherimides (PEIs) were prepared with two representative aromatic diamines (4,4′-oxydianiline and m-phenylenediamine (m-PDA)) via two-step procedure and chemical imidization. Isomeric polyimides showed Tgs from 206 to 256°C in nitrogen and Td5%s from 488 to 511°C in argon, good mechanical properties (tensile moduli of 2.3–3.3 GPa, tensile strengths of 70–96 MPa, and elongations at break of 3.2%–5.1%), and good solubility. With the introduction of 3-substituted phthalimide unit, PEIs displayed higher Tg values, lower strengths and elongations, better solubility and larger d-spacings. The rheological properties of thermoplastic polyimide resins based on the BPADA isomers were investigated, which showed that polyetherimide PEI-3b derived from 3,3′-BPADA and m-PDA had the lowest melt viscosity among the isomers, indicating that the melt processibility had been greatly improved.  相似文献   

8.
Bis(hydroxyethyl) naphthalate (BHEN) was polymerized to polyethylenenaphthalate (PEN) in the presence of various metallic catalysts. The influence of the nature and concentration of these catalysts on the rate of polymerization has been investigated. The order of decreasing catalytic influence of various metal ions on the polymerization of BHEN was found to be: Ti > Sb > Zn > Co > Pb > Ni(Mg). The effect of the reaction temperature has also been studied. The optimal concentration of these catalyst and reaction temperature were found to be 30 × 10?5 (mol/mol BHEN) and 285–293°C, respectively. Because of its insolubility in ordinary solvent, the molecular weight of PEN was measured using the light scattering method. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
A series of poly(amide–imide)s IIIa–m containing flexible isopropylidene and ether groups in the backbone were synthesized by the direct polycondensation of 4,4′‐[1,4‐phenylenebis(isopropylidene‐1,4‐phenyleneoxy)]dianiline (PIDA) with various bis(trimellitimide)s IIa–m in N‐methyl‐2‐pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. The resulting poly(amide–imide)s had inherent viscosities in the range of 0.80–1.36 dL/g. Except for those from the bis(trimellitimide)s of p‐phenylenediamine and benzidine, all the polymers could be cast from DMAc into transparent and tough films. They exhibited excellent solubility in polar solvents. The 10% weight loss temperatures of the polymers in air and in nitrogen were all above 495°C, and their Tg values were in the range of 201–252°C. Some properties of poly(amide–imide)s III were compared with those of the corresponding poly(amide–imide)s V prepared from the bis(trimellitimide) of diamine PIDA and various aromatic diamines. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 69–76, 1999  相似文献   

10.
Four bis(ether anhydride)s, 4,4′‐(1,4‐phenylenedioxy)diphthalic anhydride (IV), 4,4′‐(2,5‐tolylenedioxy)‐diphthalic anhydride (Me‐IV), 4,4′‐(2‐chloro‐1,4‐phenylenedioxy)diphthalic anhydride (Cl‐IV), and 4,4′‐(2,5‐biphenylenedioxy)diphthalic anhydride (Ph‐IV), were prepared in three steps starting from the nucleophilic nitrodisplacement reaction of 4‐nitrophthalonitrile with the potassium phenoxides of hydroquinone and various substituted hydroquinones such as methylhydroquinone, chlorohydroquinone, and phenylhydroquinone in N,N‐dimethylformamide, followed by alkaline hydrolysis and dehydration. Four series of poly(ether imide)s were prepared from bis(ether anhydride)s with various aromatic diamines by a classical two‐step procedure. The inherent viscosities of the intermediate poly(amic acid)s were in the range of 0.40–2.63 dL/g. Except for those derived from p‐phenylenediamine and benzidine, almost all the poly(amic acid)s could be solution‐cast and thermally converted into transparent, flexible, and tough polyimide films. Introduction of the chloro or phenyl substituent leads to a decreased crystallinity and an increased solubility of the polymers. The glass transition temperatures (Tg) of these polyimides were recorded in the range of 204–263°C. In general, the methyl‐ and chloro‐substituted polyimides exhibited relatively higher Tgs, whereas the phenyl‐substituted ones exhibited slightly lower Tgs compared to the corresponding nonsubstituted ones. Thermogravimetric analysis (TG) showed that 10% weight loss temperatures of all the polymers were above 500°C either in nitrogen or in air. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 665–675, 1999  相似文献   

11.
A series of novel aromatic poly(ether imide)s (PEI) containing ortho‐catenated phenylene rings and pendant trifluoromethyl group have been prepared from 1,2‐bis(3,4‐dicarboxyphenoxy)benzene dianhydride (1) with seven trifluoromethyl‐substituted aromatic bis(ether amine)s ( 2a‐g ) via a conventional two‐stage process that included ring‐opening polyaddition to form the poly(amic acid)s followed by chemical imidization to the polyimides. These PEIs had inherent viscosities in the range of 0.45–1.17 dL/g that corresponded to weight–average and number–average molecular weights (by gel‐permeation chromatography) of 42,000–102,000 and 28,500–67,500, respectively. All the PEIs were readily soluble in many organic solvents and could be solution‐cast into transparent, flexible, and strong films. These films were essentially colorless; they had a very low yellowness index of 4.34–6.55 and an UV–vis absorption cut‐off wavelength at 361–370 nm. The PEIs exhibited moderate‐to‐high glass‐transition temperatures (Tg) in the range of 185–270 °C, softening temperatures (Ts) in the range of 184–275 °C, and 10% weight loss temperatures higher than 466 °C in nitrogen or in air. They also showed low moisture absorptions of 0.49–0.70% and low dielectric constants of 2.78–3.26 (measured at 10 kHz). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3092–3102, 2006  相似文献   

12.
Novel polypyrazolinones with inherent viscosities ranging from 0.12 to 0.44 dL/g were prepared by the Michael-type nucleophilic addition-cyclization of various dihydrazines with 3,3′-(1,3- or 1,4-phenylene)bis(ethyl propynoate) (1,3- or 1,4-PEP) and 3,3′-(1,4-phenylene)bis(phenyl propynoate) (1,4-PPhP) in N-methylpyrrolidone (NMP) solution at 25–110°C. The polymers exhibited moderate thermal stability with initial weight loss in air about 200°C and in nitrogen about 300°C (TGA). No apparent Tg′s were observed by DSC analysis. The synthesis and characterization of the polypyrazolinones is discussed.  相似文献   

13.
Three new bis(ether‐acyl chloride) monomers, 1,1‐bis[4‐(4‐chloroformylphenoxy)phenyl]cyclohexane ( 1a ), 5,5‐bis[4‐(4‐chloroformylphenoxy)phenyl]‐4,7‐methanohexahydroindan ( 1b ), and 9,9‐bis[4‐(4‐chloroformylphenoxy)phenyl]fluorene ( 1c ), were synthesized from readily available compounds. Aromatic polybenzoxazoles bearing ether and cardo groups were obtained by the low‐temperature solution polycondensation of the bis(ether‐acyl chloride)s with three bis(aminophenol)s and the subsequent thermal cyclodehydration of the resultant poly(o‐hydroxy amide)s. The intermediate poly(o‐hydroxy amide)s exhibited inherent viscosities in the range of 0.35–0.71 dL/g. All of the poly(o‐hydroxy amide)s were amorphous and soluble in many organic polar solvents, and most of them could afford flexible and tough films by solvent casting. The poly(o‐hydroxy amide)s exhibited glass‐transition temperatures (Tg's) in the range of 141–169 °C and could be thermally converted into the corresponding polybenzoxazoles approximately in the region of 240–350 °C, as indicated by the DSC thermograms. Flexible and tough films of polybenzoxazoles could be obtained by thermal cyclodehydration of the poly(o‐hydroxy amide) films. All the polybenzoxazoles were amorphous and showed an enhanced Tg but a dramatically decreased solubility as compared with their poly(o‐hydroxy amide) precursors. They exhibited Tg's of 215–272 °C by DSC and showed insignificant weight loss before 500 °C in nitrogen or air. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4014–4021, 2001  相似文献   

14.
Random poly(hexamethylene terephthalate‐co‐galactarate)s and poly(dodecamethylene terephthalate‐co‐galactarate)s copolyesters covering the whole range of compositions were obtained with weight‐average molecular weights of ~30,000–50,000 g mol?1 by melt polycondensation. They were thermally stable above 300 °C, and displayed Tg in the +20 to ?20 °C range with values steadily decreasing with the content in galactarate units. All the copolyesters were semicrystalline with Tm between 50 and 150 °C and those made from dodecanediol were able to crystallize from the melt at a crystallization rate depending on composition. Copolyesters containing up to 50% of galactaric units retained the crystal structure of their respective polyterephthalate homopolyesters, whereas they adopted the structure of the respective polygalactarates when the content in Galx units reached 70%. Stress‐strain essays revealed decay in the mechanical parameters as the aromatic units were replaced by Galx. Incubation in aqueous buffer revealed that hydrolysis of the polyesters were largely enhanced by copolymerization and evidenced the capacity of the Galx unit for making aromatic polyesters susceptible to biodegradation. A detailed NMR analysis complemented by SEM observations indicated that hydrolysis took place by preferred splitting of galactarate ester bonds with releasing of alkanediol and Galx‐diacid. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
High‐molecular‐weight poly(phthalazinone)s with very high glass‐transition temperatures (Tg's) were synthesized via a novel N–C coupling reaction. New bisphthalazinone monomers ( 7a–e ) were synthesized from 2‐(4‐chlorobenzoyl) phthalic acid in two steps. Poly(phthalazinone)s, having inherent viscosities in the range of 0.34–0.91 dL/g, were prepared by the reaction of the bis(phthalazinone) monomers with an activated aryl halide in a dipolar aprotic solvent in the presence of potassium carbonate. The poly(phthalazinone)s exhibited Tg's greater than 230 °C. polymer 8b synthesized from diphenyl biphenol and bis(4‐flurophenyl) sulfone demonstrated the highest Tg of 297 °C. Thermal stabilities of the poly(phthalazinone)s were determined by thermogravimetric analysis. All the poly(phthalazinone)s showed a similar pattern of decomposition with no weight loss below 450 °C in nitrogen. The temperatures of 5% weight loss were observed to be about 500 °C. The poly(phthalazinone)s containing 4,4′‐isopropylidenediphenol and 4,4′‐(hexafluoroisopropylidene) diphenol and diphenyl ether linkage were soluble in chlorinated solvents such as chloroform. Other poly‐(phthalazinone)s were soluble in dipolar aprotic solvents such as N,N′‐dimethylacetamide. The soluble poly(phthalazinone)s can be cast as flexible films from solution. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2481–2490, 2003  相似文献   

16.
This work reports the synthesis and characterization of diamantane‐based polyimides obtained from 4,9‐bis[4(3,4‐dicarboxyphenoxy)phenyl]diamantane dianhydride and various aromatic diamines. Interestingly, the diamantane‐based polyimides were very stable to hydrolysis. This novel polyimide exhibits a low dielectric constant (2.65–2.77), low moisture absorption (<0.67%), good solubility, high Tg and unusually high thermal stability. Dynamic mechanical analysis (DMA) reveals that the diamantane‐based polyimides have high Tg ranging from 281 to 379 °C. The high‐temperature β1 subglass transition around 285 °C was observed in polyimide 6a derived from 2,2′‐bis(trifluoromethyl)benzidine. This class of novel diamantane‐based polyimide is very promising for electronic applications, because of its good mechanical properties, good thermal stability, low dielectric constant, excellent hydrolytic resistance, and low moisture absorption. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1673–1684, 2009  相似文献   

17.
A series of poly(ether imide)s (PEIs), III a–k , with light color and good physical properties were prepared from 1,4‐bis(3,4‐dicarboxypheoxy)‐2,5‐di‐tert‐butylbenzene dianhydride ( I ) with various aromatic diamines ( II a–k ) via a conventional two‐stage procedure that included a ring‐opening polyaddition to yield poly(amic acid)s (PAA), followed by thermal imidization to the PEI. The intermediate PAA had inherent viscosities in the range of 1.00–1.53 dL g?1. Most of the PEIs showed excellent solubility in chlorinated solvents such as dichloromethane, chloroform, and m‐cresol, but did not easily dissolve in dimethyl sulfoxide and amide‐type polar solvents. The III series had tensile strengths of 96–116 MPa, an elongation at break of 7–8%, and initial moduli of 2.0–2.5 GPa. The glass‐transition temperatures (Tg) and softening temperatures (Ts's) of the III series were recorded between 232 and 285 °C and 216–279 °C, respectively. The decomposition temperatures for 10% weight loss all occurred above 511 °C in nitrogen and 487 °C in air. The III series showed low dielectric constants (2.71–3.54 at 1 MHz), low moisture absorption (0.18–0.66 wt %), and was light‐colored with a cutoff wavelength below 380 nm and a low yellow index (b*) values of 7.3–14.8. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1270–1284, 2005  相似文献   

18.
Two dicationic salts with bis(triflimide) as counterions exhibited crystal-to-smectic liquid crystalline phase transitions (T m=41 and 37°C) and smectic-to-isotropic liquid phase transitions (T i=112, 136°C). They had a broad liquid crystalline phase range (71–99°C) and an excellent range of thermal stability (360–364°C). Their mixtures of various compositions also displayed liquid crystalline properties from r.t. to an extended range of temperatures. They exhibited fluorescence in 1, 2-dimethoxyethane and methanol.  相似文献   

19.
A series of isomeric poly(thioether ether imide)s (PTEIs) containing both thioether and ether linkages were prepared by nucleophilic substitution reaction of isomeric bis(chlorophthalimide)s with 4,4′‐thiobisbenzenethiol. The inherent viscosities of these polymers were in the range of 0.40–0.56 dL/g in m‐cresol at 30°C. The Tg values of PTEIs were 196–236°C; T5% values reached up to 509–529°C in nitrogen and 508–534°C in air, which indicated this kind of polyimide possessed excellent thermal stability. The hydrolytic stability was arranged in the order: a > b > c > d > e, and improved with increasing the content of 3‐substituted phthalimide unit in the polymer backbone. Flexible films could be cast from the polymer solution with a solid content of 10%. The PTEI films exhibited good mechanical properties with tensile strengths of 90–104 MPa, elongations at break of 6.6–7.9%, and tensile moduli of 2.3–2.6 GPa. The minimum complex viscosity of PTEIs c was about 100 Pa·s at 310°C and the minimum melt viscosity of PTEIs (a–e) decreased with increasing the content of unsymmetrical 3,4′‐substituted phthalimide units. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
4,4′‐(1,4‐Phenylenedioxy)dibenzoic acid as well as the 2‐methyl‐, 2‐tert‐butyl‐, or 2‐phenyl‐substituted derivatives of this dicarboxylic acid were synthesized in two main steps from p‐fluorobenzonitrile and hydroquinone or its methyl‐, tert‐butyl‐, or phenyl‐substituted derivatives. Polyhydrazides and poly(amide–hydrazide)s were prepared from these bis(ether benzoic acid)s or their diacyl chlorides with terephthalic dihydrazide, isophthalic dihydrazide, or p‐aminobenzoyl hydrazide by means of the phosphorylation reaction or low‐temperature solution polycondensation. Most of the hydrazide polymers and copolymers are amorphous and readily soluble in various polar solvents such as N‐methyl‐2‐pyrrolidone (NMP) and dimethyl sulfoxide. They could be solution‐cast into transparent, flexible, and tough films. These polyhydrazides and poly(amide–hydrazide)s had Tgs in the range of 167–237°C and could be thermally cyclodehydrated into the corresponding poly(1,3,4‐oxadiazole)s and poly(amide–1,3,4‐oxadiazole)s approximately in the region of 250–350°C, as evidenced by the DSC thermograms. All the tert‐butyl‐substituted oxadiazole polymers and those derived from isophthalic dihydrazide were organic soluble. The thermally converted oxadiazole polymers exhibited Tgs in the range of 208–243°C and did not show significant weight loss before 450°C either in nitrogen or in air. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1169–1181, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号