首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文讨论了mortar型旋转Q_1元的多重网格方法.证明了W循环的多重网格法是最优的,即收敛率与网格尺寸及层数无关.同时给出了一种可变的V循环多重网格算法,得到了一个条件数一致有界的预条件子.最后,数值试验验证了我们的理论结果.  相似文献   

2.
We consider the convergence theory of adaptive multigrid methods for second-order elliptic problems and Maxwell's equations. The multigrid algorithm only performs pointwise Gauss-Seidel relaxations on new degrees of freedom and their "immediate" neighbors. In the context of lowest order conforming finite element approximations, we present a unified proof for the convergence of adaptive multigrid V-cycle algorithms. The theory applies to any hierarchical tetrahedral meshes with uniformly bounded shape-regularity measures. The convergence rates for both problems are uniform with respect to the number of mesh levels and the number of degrees of freedom. We demonstrate our convergence theory by two numerical experiments.  相似文献   

3.
In this paper, some V-cycle multigrid algorithms are presented for the coupling system arising from the discretization of the Dirichlet exterior problem by coupling the natural boundary element method and finite element method. The convergence of these multigrid algorithms is obtained even with only one smoothing on all levels. The rate of convergence is found uniformly bounded independent of the number of levels and the mesh sizes of all levels, which indicates that these multigrid algorithms are optimal. Some numerical results are also reported.  相似文献   

4.
This paper is on the convergence analysis for two‐grid and multigrid methods for linear systems arising from conforming linear finite element discretization of the second‐order elliptic equations with anisotropic diffusion. The multigrid algorithm with a line smoother is known to behave well when the discretization grid is aligned with the anisotropic direction; however, this is not the case with a nonaligned grid. The analysis in this paper is mainly focused on two‐level algorithms. For aligned grids, a lower bound is given for a pointwise smoother, and this bound shows a deterioration in the convergence rate, whereas for ‘maximally’ nonaligned grids (with no edges in the triangulation parallel to the direction of the anisotropy), the pointwise smoother results in a robust convergence. With a specially designed block smoother, we show that, for both aligned and nonaligned grids, the convergence is uniform with respect to the anisotropy ratio and the mesh size in the energy norm. The analysis is complemented by numerical experiments that confirm the theoretical results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
We consider H(curl, Ω)-elliptic variational problems on bounded Lipschitz polyhedra and their finite element Galerkin discretization by means of lowest order edge elements. We assume that the underlying tetrahedral mesh has been created by successive local mesh refinement, either by local uniform refinement with hanging nodes or bisection refinement. In this setting we develop a convergence theory for the the so-called local multigrid correction scheme with hybrid smoothing. We establish that its convergence rate is uniform with respect to the number of refinement steps. The proof relies on corresponding results for local multigrid in a H^1 (Ω)-context along with local discrete Helmholtz-type decompositions of the edge element space.  相似文献   

6.
Summary. We consider the solution of systems of linear algebraic equations which arise from the finite element discretization of variational problems posed in the Hilbert spaces and in three dimensions. We show that if appropriate finite element spaces and appropriate additive or multiplicative Schwarz smoothers are used, then the multigrid V-cycle is an efficient solver and preconditioner for the discrete operator. All results are uniform with respect to the mesh size, the number of mesh levels, and weights on the two terms in the inner products. Received June 12, 1998 / Revised version received March 12, 1999 / Published online January 27, 2000  相似文献   

7.
Summary. This paper is concerned with the convergence analysis of robust multigrid methods for convection-diffusion problems. We consider a finite difference discretization of a 2D model convection-diffusion problem with constant coefficients and Dirichlet boundary conditions. For the approximate solution of this discrete problem a multigrid method based on semicoarsening, matrix-dependent prolongation and restriction and line smoothers is applied. For a multigrid W-cycle we prove an upper bound for the contraction number in the euclidean norm which is smaller than one and independent of the mesh size and the diffusion/convection ratio. For the contraction number of a multigrid V-cycle a bound is proved which is uniform for a class of convection-dominated problems. The analysis is based on linear algebra arguments only. Received April 26, 2000 / Published online June 20, 2001  相似文献   

8.
This paper presents the results of numerical experiments on the use of equal‐order and mixed‐order interpolations in algebraic multigrid (AMG) solvers for the fully coupled equations of incompressible fluid flow. Several standard test problems are addressed for Reynolds numbers spanning the laminar range. The range of unstructured meshes spans over two orders of problem size (over one order of mesh bandwidth). Deficiencies in performance are identified for AMG based on equal‐order interpolations (both zero‐order and first‐order). They take the form of poor, fragile, mesh‐dependent convergence rates. The evidence suggests that a degraded representation of the inter‐field coupling in the coarse‐grid approximation is the cause. Mixed‐order interpolation (first‐order for the vectors, zero‐order for the scalars) is shown to address these deficiencies. Convergence is then robust, independent of the number of coarse grids and (almost) of the mesh bandwidth. The AMG algorithms used are reviewed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, the multigrid methods using Hermitian/skew-Hermitian splitting (HSS) iteration as smoothers are investigated. These smoothers also include the modified additive and multiplicative smoothers which result from subspace decomposition. Without full elliptic regularity assumption, it is shown that the multigrid methods with these smoothers converge uniformly for second-order nonselfadjoint elliptic boundary value problems if the mesh size of the coarsest grid is sufficiently small (but independent of the number of the multigrid levels). Numerical results are reported to confirm the theoretical analysis.  相似文献   

10.
This paper provides a proof for the uniform convergence rate (independently of the number of mesh levels) for the nonnested V-cycle multigrid method for nonsymmetric and indefinite second-order elliptic problems.  相似文献   

11.
In this paper, we present a multigrid V‐cycle preconditioner for the linear system arising from piecewise linear nonconforming Crouzeix–Raviart discretization of second‐order elliptic problems with jump coefficients. The preconditioner uses standard conforming subspaces as coarse spaces. We showed that the convergence rates of the (multiplicative) two‐grid and multigrid V‐cycle algorithms will deteriorate rapidly because of large jumps in coefficient. However, the preconditioned systems have only a fixed number of small eigenvalues depending on the large jump in coefficient, and the effective condition numbers are independent of the coefficient and bounded logarithmically with respect to the mesh size. As a result, the two‐grid or multigrid preconditioned conjugate gradient algorithm converges nearly uniformly. We also comment on some major differences of the convergence theory between the nonconforming case and the standard conforming case. Numerical experiments support the theoretical results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Multigrid for the mortar element method for P1 nonconforming element   总被引:7,自引:0,他引:7  
In this paper, a multigrid algorithm is presented for the mortar element method for P1 nonconforming element. Based on the theory developed by Bramble, Pasciak, Xu in [5], we prove that the W-cycle multigrid is optimal, i.e. the convergence rate is independent of the mesh size and mesh level. Meanwhile, a variable V-cycle multigrid preconditioner is constructed, which results in a preconditioned system with uniformly bounded condition number. Received May 11, 1999 / Revised version received April 1, 2000 / Published online October 16, 2000  相似文献   

13.
A multigrid method is proposed for solving the system of difference equations obtained via the finite-volume discretization of the Euler or Navier-Stokes equations on an unstructured mesh. A sequence of nested unstructured grids is generated via collapsing faces that take into account the features of the problem (inviscid/viscous). The capabilities of the approach are demonstrated by computing inviscid and viscous compressible uniform flows around an airfoil on structured, unstructured, and hybrid meshes. The topology of grids of different levels is described. Their quality and the influence of the grid structure on the convergence factor of the multigrid method are discussed.  相似文献   

14.
This paper investigates the effectiveness of two different Algebraic Multigrid (AMG) approaches to the solution of 4th‐order discrete‐difference equations for incompressible fluid flow (in this case for a discrete, scalar, stream‐function field). One is based on a classical, algebraic multigrid, method (C‐AMG) the other is based on a smoothed‐aggregation method for 4th‐order problems (SA‐AMG). In the C‐AMG case, the inter‐grid transfer operators are enhanced using Jacobi relaxation. In the SA‐AMG case, they are improved using a constrained energy optimization of the coarse‐grid basis functions. Both approaches are shown to be effective for discretizations based on uniform, structured and unstructured, meshes. They both give good convergence factors that are largely independent of the mesh size/bandwidth. The SA‐AMG approach, however, is more costly both in storage and operations. The Jacobi‐relaxed C‐AMG approach is faster, by a factor of between 2 and 4 for two‐dimensional problems, even though its reduction factors are inferior to those of SA‐AMG. For non‐uniform meshes, the accuracy of this particular discretization degrades from 2nd to 1st order and the convergence factors for both methods then become mesh dependent. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper we discuss multigrid methods for ill-conditioned symmetric positive definite block Toeplitz matrices. Our block Toeplitz systems are general in the sense that the individual blocks are not necessarily Toeplitz, but we restrict our attention to blocks of small size. We investigate how transfer operators for prolongation and restriction have to be chosen such that our multigrid algorithms converge quickly. We point out why these transfer operators can be understood as block matrices as well and how they relate to the zeroes of the generating matrix function. We explain how our new algorithms can also be combined efficiently with the use of a natural coarse grid operator. We clearly identify a class of ill-conditioned block Toeplitz matrices for which our algorithmic ideas are suitable. In the final section we present an outlook to well-conditioned block Toeplitz systems and to problems of vector Laplace type. In the latter case the small size blocks can be interpreted as degrees of freedom associated with a node. A large number of numerical experiments throughout the article confirms convincingly that our multigrid solvers lead to optimal order convergence. AMS subject classification (2000) 65N55, 65F10  相似文献   

16.
The convergence theory for algebraic multigrid (AMG) algorithms proposed in Chang and Huang [Q.S. Chang, Z.H. Huang, Efficient algebraic multigrid algorithms and their convergence, SIAM J. Sci. Comput. 24 (2002) 597–618] is further discussed and a smaller and elegant upper bound is obtained. On the basis of element-free AMGe [V.E. Henson, P.S. Vassilevski, Element-free AMGe: General algorithms for computing interpolation weights in AMG, SIAM J. Sci. Comput. 23(2) (2001) 629–650] we rewrite the interpolation operator for the classical AMG (cAMG), present a uniform expression and then, by introducing a sparse approximate inverse in the Frobenius norm, give a general convergence theorem which is suited for not only cAMG but also AMG for finite elements and element-free AMGe.  相似文献   

17.
In this paper,the monolithic multigrid method is investigated for reduced magnetohydrodynamic equations.We propose a diagonal Braess-Sarazin smoother for the finite element discrete system and prove the uniform convergence of the MMG method with respect to mesh sizes.A multigrid-preconditioned FGMRES method is proposed to solve the magnetohydrodynamic equations.It turns out to be robust for relatively large physical parameters.By extensive numerical experiments,we demonstrate the optimality of the monolithic multigrid method with respect to the number of degrees of freedom.  相似文献   

18.
The quality of the mesh used in the finite element discretizations will affect the efficiency of solving the discreted linear systems. The usual algebraic solvers except multigrid method do not consider the effect of the grid geometry and the mesh quality on their convergence rates. In this paper, we consider the hierarchical quadratic discretizations of three‐dimensional linear elasticity problems on some anisotropic hexahedral meshes and present a new two‐level method, which is weakly independent of the size of the resulting problems by using a special local block Gauss–Seidel smoother, that is LBGS_v iteration when used for vertex nodes or LBGS_m iteration for midside nodes. Moreover, we obtain the efficient algebraic multigrid (AMG) methods by applying DAMG (AMG based on distance matrix) or DAMG‐PCG (PCG with DAMG as a preconditioner) to the solution of the coarse level equation. The resulting AMG methods are then applied to a practical example as a long beam. The numerical results verify the efficiency and robustness of the proposed AMG algorithms. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Piecewise uniform meshes introduced by Shishkin, are a very useful tool to construct robust and efficient numerical methods to approximate the solution of singularly perturbed problems. For small values of the diffusion coefficient, the step size ratios, in this kind of grids, can be very large. In this case, standard multigrid methods are not convergent. To avoid this troublesome, in this paper we propose a modified multigrid algorithm, which works fine on Shishkin meshes. We show some numerical experiments confirming that the proposed multigrid method is convergent, and it has similar properties that standard multigrid for classical elliptic problems.  相似文献   

20.
Decheng Wan 《PAMM》2007,7(1):2150039-2150040
Numerical simulations of flow-induced rotation of wing by multigrid fictitious boundary and grid deformation methods are presented. The flow is computed by a special ALE formulation with a multigrid finite element solver. The solid wing is allowed to move freely through the computational mesh which is adaptively aligned by a special mesh deformation method. The advantage of this approach is that no expensive remeshing has to be performed. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号