首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this review, we present the recent work of the author in comparison with various related results obtained by other authors in literature. We first recall the stability, contractivity and asymptotic stability results of the true solution to nonlinear stiff Volterra functional differential equations (VFDEs), then a series of stability, contractivity, asymptotic stability and B-convergence results of Runge-Kutta methods for VFDEs is presented in detail. This work provides a unified theoretical foundation for the theoretical and numerical analysis of nonlinear stiff problems in delay differential equations (DDEs), integro-differential equations (IDEs), delayintegro-differential equations (DIDEs) and VFDEs of other type which appear in practice.   相似文献   

2.
This paper concerns the stability analysis of numerical methods for approximating the solutions to (stiff) initial value problems. Our analysis includes the case of (nonlinear) systems of differential equations that are essentially more general than the classical test equationU=U, with a complex constant.We explore the relation between two stability concepts, viz. the concepts of contractivity and weak contractivity.General Runge-Kutta methods, one-stage Rosenbrock methods and a notable rational Runge-Kutta method are analysed in some detail.  相似文献   

3.
Summary We investigate contractivity properties of explicit linear multistep methods in the numerical solution of ordinary differential equations. The emphasis is on the general test-equation , whereA is a square matrix of arbitrary orders1. The contractivity is analysed with respect to arbitrary norms in thes-dimensional space (which are not necessarily generated by an inner product). For given order and stepnumber we construct optimal multistep methods allowing the use of a maximal stepsize.This research has been supported by the Netherlands organisation for scientific research (NWO)  相似文献   

4.
It is known that vector translations are contractive with respect to Thompson’s part metric. Here, we give a simple proof, based on a representation of Thompson’s metric through positive functionals. Moreover, we use contractivity of translations to prove a fixed point result for mappings that are Lipschitz continuous with respect to Thompson’s metric with Lipschitz constant r>1. The case r = 1 for order preserving or order reversing mappings has been recently studied by Lawson and Lim. We apply our result to a nonlinear boundary value problem.  相似文献   

5.
An integration method for ordinary differential equations is said to be contractive if all numerical solutions of the test equationx=x generated by that method are not only bounded (as required for stability) but non-increasing. We develop a theory of contractivity for methods applied to stiff and non-stiff, linear and nonlinear problems. This theory leads to the design of a collection of specific contractive Adams-type methods of different orders of accuracy which are optimal with respect to certain measures of accuracy and/or contractivity. Theoretical and numerical results indicate that some of these novel methods are more efficient for solving problems with a lack of smoothness than are the familiar backward differentiation methods. This lack of smoothness may be either inherent in the problem itself, or due to the use of strongly varying integration steps. In solving smooth problems, the efficiency of the low-order contractive methods we propose is approximately the same as that of the corresponding backward differentiation methods.This work was done during the first author's stay at the IBM Thomas J. Watson Research Center under his appointment as Senior Researcher of the Academy of Finland. It was sponsored in addition by the IBM Corporation and by the AirForce Office of Scientific Research (AFSC), United States Air Force, under contracts No. F44620-75-C-0058 and F49620-77-C-0088. The United States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon.  相似文献   

6.
Summary This paper concerns the analysis of implicit Runge-Kutta methods for approximating the solutions to stiff initial value problems. The analysis includes the case of (nonlinear) systems of differential equations that are essentially more general than the classical test equationU=U (with a complex constant). The properties of monotonicity and boundedness of a method refer to specific moderate rates of growth of the approximations during the numerical calculations. This paper provides necessary conditions for these properties by using the important concept of algebraic stability (introduced by Burrage, Butcher and by Crouzeix). These properties will also be related to the concept of contractivity (B-stability) and to a weakened version of contractivity.  相似文献   

7.
Summary. We consider systems of delay differential equations (DDEs) of the form with the initial condition . Recently, Torelli [10] introduced a concept of stability for numerical methods applied to dissipative nonlinear systems of DDEs (in some inner product norm), namely RN-stability, which is the straighforward generalization of the wellknown concept of BN-stability of numerical methods with respect to dissipative systems of ODEs. Dissipativity means that the solutions and corresponding to different initial functions and , respectively, satisfy the inequality , and is guaranteed by suitable conditions on the Lipschitz constants of the right-hand side function . A numerical method is said to be RN-stable if it preserves this contractivity property. After showing that, under slightly more stringent hypotheses on the Lipschitz constants and on the delay function , the solutions and are such that , in this paper we prove that RN-stable continuous Runge-Kutta methods preserve also this asymptotic stability property. Received March 29, 1996 / Revised version received August 12, 1996  相似文献   

8.
Based on separable property of the linear and the nonlinear terms and on the Hermitian and skew-Hermitian splitting of the coefficient matrix, we present the Picard-HSS and the nonlinear HSS-like iteration methods for solving a class of large scale systems of weakly nonlinear equations. The advantage of these methods over the Newton and the Newton-HSS iteration methods is that they do not require explicit construction and accurate computation of the Jacobian matrix, and only need to solve linear sub-systems of constant coefficient matrices. Hence, computational workloads and computer memory may be saved in actual implementations. Under suitable conditions, we establish local convergence theorems for both Picard-HSS and nonlinear HSS-like iteration methods. Numerical implementations show that both Picard-HSS and nonlinear HSS-like iteration methods are feasible, effective, and robust nonlinear solvers for this class of large scale systems of weakly nonlinear equations.  相似文献   

9.
We consider the concept of bandedness in a matrix. We study iterative methods of solving systems of linear and nonlinear equations of large dimension with a banded Jacobian matrix. We propose a method of computing the row submatrix of a certain full Jacobian matrix that is efficient in a certain sense for numerical differentiation of a vector-valued function of several arguments.Translated fromMatematicheskie Metody i Fiziko-Mekhanicheskie Polya, Issue 36, 1992, pp. 21–24.  相似文献   

10.
This paper is concerned with the stability of numerical processes that arise after semi-discretization of linear parabolic equations wit a delay term. These numerical processes are obtained by applying step-by-step methods to the resulting systems of ordinary delay differential equations. Under the assumption that the semi-discretization matrix is normal we establish upper bounds for the growth of errors in the numerical processes under consideration, and thus arrive at conclusions about their stability. More detailed upper bounds are obtained for -methods under the additional assumption that the eigenvalues of the semi-discretization matrix are real and negative. In particular, we derive contractivity properties in this case. Contractivity properties are also obtained for the -methods applied to the one-dimensional test equation with real coefficients and a delay term. Numerical experiments confirming the derived contractivity properties for parabolic equations with a delay term are presented.  相似文献   

11.
In this paper we first introduce the definition of contractivity region of Runge-Kutta methods and then examine the general features of the contractivity regions. We find that the intersections of the contractivity region and the axis place is $C^s$ are always either the whole axis plane or a generalized disk introduced by Dahlquist and Jeltsch. We also define the AN-contractivity and show that it is equivalent to the algebraic stability and can be determined locally in a neighborhood of the origion. However, many implicit methods are only r-circle contractive but not AN-contractive. A simple bound for the radius r of the r-circle contractive methods is given.  相似文献   

12.
For the block system of weakly nonlinear equations Ax=G(x), where is a large sparse block matrix and is a block nonlinear mapping having certain smoothness properties, we present a class of asynchronous parallel multisplitting block two-stage iteration methods in this paper. These methods are actually the block variants and generalizations of the asynchronous multisplitting two-stage iteration methods studied by Bai and Huang (Journal of Computational and Applied Mathematics 93(1) (1998) 13–33), and they can achieve high parallel efficiency of the multiprocessor system, especially, when there is load imbalance. Under quite general conditions that is a block H-matrix of different types and is a block P-bounded mapping, we establish convergence theories of these asynchronous multisplitting block two-stage iteration methods. Numerical computations show that these new methods are very efficient for solving the block system of weakly nonlinear equations in the asynchronous parallel computing environment.  相似文献   

13.
A class of two-step (hybrid) methods is considered for solving pure oscillation second order initial value problems. The nonlinear system, which results on applying methods of this type to a nonlinear differential system, may be solved using a modified Newton iteration scheme. From this class the author has derived methods which are fourth order accurate,P-stable, require only two (new) function evaluations per iteration and have a true real perfect square iteration matrix. Now, we propose an extension to sixth order,P-stable methods which require only three (new) function evaluations per iteration and for which the iteration matrix is a true realperfect cube. This implies that at most one real matrix must be factorised at each step. These methods have been implemented in a new variable step, local error controlling code.  相似文献   

14.
On monotonicity and boundedness properties of linear multistep methods   总被引:3,自引:0,他引:3  
In this paper an analysis is provided of nonlinear monotonicity and boundedness properties for linear multistep methods. Instead of strict monotonicity for arbitrary starting values we shall focus on generalized monotonicity or boundedness with Runge-Kutta starting procedures. This allows many multistep methods of practical interest to be included in the theory. In a related manner, we also consider contractivity and stability in arbitrary norms.

  相似文献   


15.
Linear multistep methods satisfying a non-linear circle contractivity condition when the step-ratios are less than some 1+,>0, are shown to exist for any order. Methods with formulas of order 1 to 12 are given.  相似文献   

16.
In this paper we investigate both the contractivity and the asymptotic stability of the solutions of linear systems of delay differential equations of neutral type (NDDEs) of the form y(t) = Ly(t) + M(t)y(t – (t)) + N(t)y(t – (t)). Asymptotic stability properties of numerical methods applied to NDDEs have been recently studied by numerous authors. In particular, most of the obtained results refer to the constant coefficient version of the previous system and are based on algebraic analysis of the associated characteristic polynomials. In this work, instead, we play on the contractivity properties of the solutions and determine sufficient conditions for the asymptotic stability of the zero solution by considering a suitable reformulation of the given system. Furthermore, a class of numerical methods preserving the above-mentioned stability properties is also presented.  相似文献   

17.
In this paper, a family of fourth orderP-stable methods for solving second order initial value problems is considered. When applied to a nonlinear differential system, all the methods in the family give rise to a nonlinear system which may be solved using a modified Newton method. The classical methods of this type involve at least three (new) function evaluations per iteration (that is, they are 3-stage methods) and most involve using complex arithmetic in factorising their iteration matrix. We derive methods which require only two (new) function evaluations per iteration and for which the iteration matrix is a true real perfect square. This implies that real arithmetic will be used and that at most one real matrix must be factorised at each step. Also we consider various computational aspects such as local error estimation and a strategy for changing the step size.  相似文献   

18.
This paper concerns the rate of growth of numerical approximations obtained by one-step methods for solving linear stiff initial value problems. For some of these methods weak stability with respect to arbitrary norms is shown to be equivalent to contractivity. This kind of stability is also proved to entail a barrierp1 for the order of accuracyp within a broad class of methods, including general Runge-Kutta methods withm1 stages.Dedicated to Professor Germund Dahlquist on the occasion of his sixtieth birthday.  相似文献   

19.
In the univariate case there are certain equivalences between the nonlinear approximation methods that use piecewise polynomials and those that use rational functions. It is known that for certain parameters the respective approximation spaces are identical and may be described as Besov spaces. The characterization of the approximation spaces of the multivariate nonlinear approximation by piecewise polynomials and by rational functions is not known. In this work we compare between the two methods in the bivariate case. We show some relations between the approximation spaces of piecewise polynomials defined on n triangles and those of bivariate rational functions of total degree n which are described by n parameters. Thus we compare two classes of approximants with the same number Cn of parameters. We consider this the proper comparison between the two methods.  相似文献   

20.
Summary By the so-called longitudinal method of lines the first boundary value problem for a parabolic differential equation is transformed into an initial value problem for a system of ordinary differential equations. In this paper, for a wide class of nonlinear parabolic differential equations the spatial derivatives occuring in the original problem are replaced by suitable differences such that monotonicity methods become applicable. A convergence theorem is proved. Special interest is devoted to the equationu t=f(x,t,u,u x,u xx), if the matrix of first order derivatives off(x,t,z,p,r) with respect tor may be estimated by a suitable Minkowski matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号