首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymerization and polymer properties of 1-phenyl-2-[4-(triphenylsilyl)phenyl]acetylene (pPh3SiDPA) and 1-phenyl-2-[4-(triisopropylsilyl)phenyl]acetylene (piPr3SiDPA), which have very bulky silyl groups, were examined. These monomers polymerized in good yields in the presence of TaCl5-based catalysts. The highest weight-average molecular weights of poly(pPh3SiDPA) and poly(piPr3SiDPA) reached about 1 × 106 and 4.8 × 106, respectively. The polymers were yellow to orange-colored solids which were soluble in toluene, chloroform, etc., and provided free-standing films by solution casting. The onset temperatures of weight loss of poly(pPh3SiDPA) and poly(piPr3SiDPA) in TGA in air were 430 and 270°C, respectively. The oxygen permeability coefficients of poly(pPh3SiDPA) and poly(piPr3SiDPA) at 25°C were 3.8 and 20 barrers, respectively, and relatively small. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2721–2725, 1998  相似文献   

2.
Copolymerization of 1-[3,5-bis(trimethylsilyl)phenyl]-2-phenylacetylene (m,m-(Me3Si)2DPA) with other diphenylacetylene derivatives and their copolymer properties were investigated. Homopolymerization of m,m-(Me3Si)2DPA by TaCl5n-Bu4Sn (1:2) did not give the polymer due to steric hindrance. However, m,m-(Me3Si)2DPA copolymerized with diphenylacetylene (DPA), 1-phenyl-2-[p-(trimethylsilyl)phenyl]acetylene (p-Me3Si DPA), and 1-phenyl-2-[m-(trimethylsilyl)phenyl]acety-lene (m-Me3SiDPA) in the presence of TaCl5n-Bu4Sn at various feed ratios to give copolymers in moderate yields. The formed copolymers were yellow to orange solids, which were soluble in common organic solvents such as toluene and CHCl3. The highest weight-average molecular weights (Mw) of these copolymers reached ca. 6 × 105 and tough films could be obtained by solution casting. Their onset temperatures of weight loss in air were observed around 400°C, indicating high thermal stability. The oxygen permeability coefficients at 25°C of copoly(m,m-(Me3Si)2 DPA/DPA) (feed ratio 1:1) and copoly(m,m-(Me3Si)2DPA/p-Me3SiDPA) (feed ratio 1:2) were 21 and 100 barrers, respectively, medium in magnitude among polymers from substituted acetylenes.  相似文献   

3.
Five novel fluorene‐containing polymers, poly[(9,9‐dimethylfluoren‐2‐yl)acetylene] ( PFA1 ), poly[(1‐pentyl‐2‐(9,9‐dimethylfluoren‐2‐yl)acetylene) ( PFA2 ), poly[1‐decyl‐2‐(9,9‐dimethylfluoren‐2‐yl)acetylene] ( PFA3 ), poly[1‐phenyl‐2‐(9,9‐dimethylfluoren‐2‐yl)acetylene] ( PFA4 ), and poly[1‐(3,4‐difluorophenyl)‐2‐(9,9‐dimethylfluoren‐2‐yl)acetylene] ( PFA5 ) were synthesized by the polymerization of the corresponding fluorene‐substituted acetylenic monomers ( M1–M5), using WCl6, MoCl5, and TaCl5 as catalysts and n‐Bu4Sn as a cocatalyst. The synthesized polymers were thermally stable and readily soluble in common organic solvents. The degradation temperatures for a 5% weight loss of the polymers were ∼352–503 °C under nitrogen. PFA1–PFA5 show emission peaks from 402 to 590 nm. Besides, their electroluminescent properties were studied in heterostructure light‐emitting diodes (LEDs), using PFA2–PFA5 as an emitting layer. The PFA5 device revealed an orange‐red emission peak at 602 nm with a maximum luminescence of 923 cd/m2 at 8 V. A device with the ITO/PEDOT/ a mixture of PFA2 (98 wt %) and PFA5 (2 wt %)/Ca/Al showed near white emission. Its maximum luminance and current efficiency are 450 cd/m2 at 15 V and 1.3 cd/A, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 519–531, 2006  相似文献   

4.
High‐molecular‐weight poly[1‐phenyl‐2‐(4‐t‐butylphenyl)acetylene], poly[1‐phenyl‐2‐(4‐trimethylsilylphenyl) acetylene], and their copolymers were synthesized by the polymerization with TaCl5n‐Bu4Sn. The obtained polymers were sulfonated by using acetyl sulfate to give sulfonated poly(diphenylacetylene)s with different degrees of substitution. The degrees of sulfonation of poly[1‐phenyl‐2‐(4‐t‐butylphenyl)acetylene] and copolymers were in the range of 0.57–0.85. When poly[1‐phenyl‐2‐(4‐trimethylsilylphenyl)acetylene] was sulfonated, the sulfonated poly(diphenylacetylene) with the highest degree of sulfonation was obtained among all the polymers in this study. Its degree of sulfonation was 1.55. All the sulfonated polymers exhibited high CO2 permselectivity, and their CO2/N2 separation factor were over 31. The sulfonated poly(diphenylacetylene) with the highest degree of sulfonation showed the highest CO2/N2 separation factor of 75. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6463–6471, 2009  相似文献   

5.
Chloro- and aryl-substituted acetylene monomers having an optically active group were polymerized by a Pd catalyst [(tBu3P)PdMeCl] bearing a bulky phosphine ligand, and by MoCl5 for comparison. The corresponding disubstituted acetylene polymers with Mn's = 2000–19,500 and 6900–10,800 were obtained in 29–83% and 11–62% yields when the Pd and Mo catalysts were used, respectively. The formation of polyacetylenes, poly[(R)- 1p ], poly[(R)- 1m ], and poly[(S)- 2p ] were confirmed by SEC and the presence of a Raman scattering peak based on the alternating double bonds of the main chain. Pd-based poly[(R)- 1m ] exhibited CD signals around 350 nm assignable to a certain secondary structure, while Mo-based poly[(R)- 1m ] did not. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3011–3016  相似文献   

6.
Three disubstituted acetylenes with an adamantyl group—1-(p-adamantylphenyl)-2-chloroacetylene (ClpAdPA), 1-(p-adamantylphenyl)-1-propyne (pAdPP), and 1-(p-adamantylphenyl)-2-phenylacetylene (pAdDPA)—polymerized in good yields in the presence of MoCl5- or TaCl5-based catalysts. The highest weight-average molecular weights of poly(ClpAdPA), poly(pAdPP), and poly(pAdDPA) reached 3.6 × 105, 1.1 × 106, and 6.0 × 106, respectively. The polymers were yellow to white solids and completely soluble in toluene, chloroform, and so forth. These polymers thermally were fairly stable, and the onset temperatures of weight loss in air were over 360 °C. Poly(pAdPP) and poly(pAdDPA) provided free-standing films by solution casting, and their oxygen permeability coefficients (PO2) at 25 °C were 8.6 and 55 barrers [1 barrer = 1 × 10−10 cm3 · (STP) · cm/(cm2 · s · cm Hg)], respectively, which are relatively small compared to those of other substituted polyacetylenes. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4546–4553, 1999  相似文献   

7.
Charge transfer (CT) interactions between poly[[o-(trimethylsilyl)phenyl]acetylene] or poly(o-Me3SiPA) and some electron acceptors were studied by ultraviolet-visible and infrared absorption spectroscopy and by x-ray photoelectron spectroscopy, (XPS). The electron acceptors used included iodine, bromine, o-chloranil, o-bromanil, 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), and tetracyanoethylene (TCNE). Varying degrees of CT interactions were observed in all of the polymer/acceptor complexes studied. The electrical conductivities σ of the organic acceptor complexes exhibited a strong acceptor concentration dependence at low acceptor levels, with the DDQ complex exhibiting the highest σ. The extent of CT and the redistribution of charges resulting from the CT in all the complexes were revealed by XPS. The poly (o-Me3SiPA)/I2 complex film lost iodine spontaneously while more than half of the bromine in the poly (o-Me3SiPA)/Br2 complex existed as covalently bonded bromine, even at low halogen loading.  相似文献   

8.
The acid-catalyzed stepwise polymerization of 1,1-diphenylethylene derivatives, p-di(1-phenylvinyl) benzene, bis[p-(1-phenylvinyl)phenyl]methane, 1,2-bis[p-(1-phenylvinyl)phenyl]ethane, bis[p-(1-phenylvinyl)phenyl]ether, and bis[p-(1-phenylvinyl)phenyl]sulfide produced selectively indanic-unit-containing polymers in pertinent conditions. Their molecular weights (M?n) were in the 1600–15, 700 region after the fractionation in hot ethnol. Melting points were in the 214–281°C region. They dissolved fairly well in conventional solvents like benzene, tetrahydrofuran, and carbon tetrachloride. According to TGA they started to decompose at 397–432°C and showed 10% weight loss at 478–502°C in air at a heating rate of 5°C/min. Focusing on the thermostability, we report on their physical properties.  相似文献   

9.
A variety of well‐defined tetra‐armed star‐shaped poly(N‐substituted p‐benzamide)s, including block poly(p‐benzamide)s with different N‐substituents, and poly(N‐substituted m‐benzamide)s, were synthesized by using porphyrin‐cored tetra‐functional initiator 2 under optimized polymerization conditions. The initiator 2 allowed discrimination of the target star polymer from concomitantly formed linear polymer by‐products by means of GPC with UV detection, and the polymerization conditions were easily optimized for selective synthesis of the star polybenzamides. Star‐shaped poly(p‐benzamide) with tri(ethylene glycol) monomethyl ether (TEG) side chain was selectively obtained by polymerization of phenyl 4‐{2‐[2‐(2‐methoxyethoxy)ethoxy]ethylamino}benzoate ( 1b ′) with 2 at ?10 °C in the case of [ 1b ′]0/[ 2 ]0 = 40 and at 0 °C in the case of [ 1b ′]0/[ 2 ]0 = 80. Star‐shaped poly(p‐benzamide) with 4‐(octyloxy)benzyl (OOB) substituent was obtained only when methyl 4‐[4‐(octyloxy)benzylamino]benzoate ( 1c ) was polymerized at 25 °C at [ 1c ]0/[ 2 ]0 = 20. On the other hand, star‐shaped poly(m‐benzamide)s with N‐butyl, N‐octyl, and N‐TEG side chains were able to be synthesized by polymerization of the corresponding meta‐substituted aminobenzoic acid alkyl ester monomers 3 at 0 °C until the ratio of [ 3 ]0/[ 2 ]0 reached 80. However, star‐shaped poly(m‐benzamide)s with the OOB group were contaminated with linear polymer even when the feed ratio of the monomer 3d to 2 was 20. The UV–visible spectrum of an aqueous solution of star‐shaped poly(p‐benzamide) with TEG side chain indicated that the hydrophobic porphyrin core was aggregated. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
The polymerization of (−)‐p‐[(tert‐butylmethylphenyl)silyl]phenylacetylene (t‐BuMePhSi*PA) and (+)‐p‐[{methyl(α‐naphthyl)phenyl}silyl]phenylacetylene (MeNpPhSi*PA) with the [(nbd)RhCl]2 Et3N catalyst yielded polymers with very high molecular weights over 2 × 106 in high yields. The optical rotations of the formed poly(t‐BuMePhSi*PA) and poly(MeNpPhSi*PA) were as high as −356 and −150° (c = 0.11 g/dL in CHCl3), respectively. The circular dichroism (CD) spectrum of poly(t‐BuMePhSi*PA) in CHCl3 exhibited very large molar ellipticities ([θ]) in the UV region: [θ]max = 9.2 × 104 ° · cm2 · dmol−1 at 330 nm and −8.0 × 104 ° · cm2 · dmol−1 at 370 nm. The [θ]max values of poly(MeNpPhSi*PA) were also fairly large: [θ]max = 7.1 × 104 ° · cm2 · dmol−1 at 330 nm and −5.3 × 104 ° · cm2 · dmol−1 at 370 nm. The optical rotations of poly(t‐BuMePhSi*PA) and poly(MeNpPhSi*PA), measured in tetrahydrofuran, chloroform, and toluene solutions, were hardly dependent on temperature in the range 22–65 °C. The CD effects of these polymers hardly changed in the temperature range 28–80 °C, either. These results indicate that the helical structures of these polymers are thermally appreciably stable. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 71–77, 2001  相似文献   

11.
Two novel phenylacetylene derivatives bearing diethylaminomethyl groups at the meta position on phenyl groups [3‐(N,N‐diethylaminomethyl)phenyl]acetylene ( 1 ) and [3,5‐bis(N,N‐diethylaminomethyl)phenyl]acetylene ( 2 ) were synthesized and polymerized with [Rh(nbd)Cl]2 (nbd: norbornadiene). Both monomers gave highly cis–transoidal stereoregular polymers that exhibited an induced circular dichroism (ICD) in the UV–visible region, probably because of a prevailing one‐handed helical conformation upon complexation with optically active carboxylic acids such as mandelic acid and lactic acid. The sign of the Cotton effects reflected the absolute configuration of the chiral acids. Therefore, these polymers can be used as a novel probe for determining the configuration of chiral acids. The polymers were stable in the presence of chiral acids in solution. The poly‐ 1 complexed with chiral acids exhibited a split‐type ICD, whereas the poly‐ 2 complexed with chiral acids showed a different, non‐split‐type ICD. The ICD pattern of the poly‐ 1 /chiral acids complexes dramatically changed with an increase in the concentration of the chiral acids, thus showing a non‐split‐type ICD similar to those of the poly‐ 2 /chiral acid complexes. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3180–3189, 2001  相似文献   

12.
The synthesis and self‐polyaddition of new monomers, o‐, m‐, and p‐[(3‐ethyloxetane‐3‐yl)methoxyethyl]benzoic acid (o‐EOMB, m‐EOMB, and p‐EOMB) containing both oxetanyl groups and carboxyl groups were examined. The reactions of o‐EOMB, m‐EOMB, and p‐EOMB in the presence of tetraphenylphosphonium bromide as a catalyst in o‐dichlorobenzene at 150–170 °C resulted in self‐polyaddition to give the corresponding hetero‐telechelic polymers poly(o‐EOMB), poly(m‐EOMB), and poly(p‐EOMB) with Mns = 14,500–33,400 in satisfactory yields. The Mn of poly(o‐EOMB) decreased at higher reaction temperatures than 150 °C, unlike those of poly(m‐EOMB) and poly(p‐EOMB), possibly due to inter‐ or intraester exchange side reactions. It was also found that the thermal properties and solubilities of these polymers were supposed with the proposed structures. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7835–7842, 2008  相似文献   

13.
Fifteen bis(phenoxy) fluorene-containing poly(amide-imide)s III were synthesized by the direct polycondensation of 9,9-bis[4-(4-aminophenoxy)phenyl]fluorene (BAPPF) with var-ious aromatic bis(trimellitimide)s II in N-methyl-2-pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. Poly(amide-imide)s III having inherent vis-cosities up to 1.45 dL/g were obtained in quantitative yields. Most of the resulting polymers showed an amorphous nature and were readily soluble in polar solvents such as NMP and N,N-dimethylacetamide. All the soluble poly(amide-imide)s afforded transparent, flexible, and tough films. The glass transition temperatures of these polymers were in the range of 263–315°C and the 10% weight loss temperatures were above 510°C in nitrogen. Some properties of poly(amide-imide)s III were compared with those of the corresponding isomeric poly(amide-imide)s III ′ prepared from 9,9-[4-(4-trimellitimidophenoxy)phenyl]fluorene and various aromatic diamines. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
Substituent‐induced electroluminescence polymers—poly[2‐(2‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(o‐R3Si)PhPPV], poly[2‐(3‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(m‐R3Si)PhPPV], and poly[2‐(4‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(p‐R3Si)PhPPV]—were synthesized according to the Gilch polymerization method. The band gap and spectroscopic data were tuned by the dimethyldodecylsilyl substituent being changed from the ortho position to the para position in the phenyl side group along the polymer backbone. The weight‐average molecular weights and polydispersities were 8.0–96 × 104 and 3.0–3.4, respectively. The maximum photoluminescence wavelengths for (o‐R3Si)PhPPV, (m‐R3Si)PhPPV, and (p‐R3Si)PhPPV appeared around 500–530 nm in the green emission region. Double‐layer light‐emitting diodes with an indium tin oxide/poly(3,4‐ethylenedioxythiophene)/polymer/Al configuration were fabricated with these polymers. The turn‐on voltages and the maximum brightness of (o‐R3Si)PhPPV, (m‐R3Si)PhPPV, and (p‐R3Si)PhPPV were 6.5–8.7 V and 1986–5895 cd/m2, respectively. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2347–2355, 2004  相似文献   

15.
Extended self‐polymerizable poly(phenylquinoxaline) monomer mixtures {i.e.,2‐[4‐(4‐hydroxyphenoxy)phenyl]‐3‐phenyl‐6‐chloroquinoxaline and 3‐[4‐(4‐hydroxy phenoxy)phenyl]‐2‐phenyl‐6‐chloroquinoxaline, 2‐[4‐(4‐hydroxyphenoxy)phenyl]‐3‐phenyl‐6‐fluoroquinoxaline and 3‐[4‐(4‐hydroxyphenoxy)phenyl]‐2‐phenyl‐6‐fluoroquinoxaline, and 2‐(4‐fluorophenyl)‐3‐phenyl‐6‐(4‐hydroxyphenoxy)quinoxaline and 3‐(4‐fluorophenyl)‐2‐phenyl‐6‐(4‐hydroxyphenoxy)quinoxaline} more flexible and nucleophilic than a previously reported monomer mixture [i.e., 3‐(4‐hydroxyphenyl)‐2‐phenyl‐6‐fluoroquinoxaline and 2‐(4‐hydroxyphenyl)‐3‐phenyl‐6‐fluoroquinoxaline] were synthesized. The monomer mixtures were then polymerized into high‐molecular‐weight polymers. A sample was obtained, through a chlorine displacement reaction, that was a semicrystalline polymer with an intrinsic viscosity of 1.11 dL/g in m‐cresol at 30 ± 0.1 °C and two melting temperatures at 339 and 377 °C in the first differential scanning calorimetry scan. There was a melting temperature at 328 °C without a detectable glass‐transition temperature (Tg) when the sample was subjected to a second differential scanning calorimetry scan. The samples from fluorine displacement reactions were completely amorphous polymers. They had intrinsic viscosities of 0.53–0.90 dL/g in m‐cresol at 30 ± 0.1 °C and Tg's of 220–224 °C. The polymer samples from fluorine displacement reactions were evaluated with gel permeation chromatography and matrix‐assisted laser desorption/ionization time‐of‐flight analyses, which monitored the existence of certain amounts of cyclic oligomers. The thin films of the polymers had room‐temperature tensile strengths of 97–113 MPa, room‐temperature Young's moduli of 2.30–2.35 GPa, and room‐temperature elongations at break of 40–150%. The melt viscosity decreased from 107 to less than 104 Pa s at 310 °C as the frequency was increased from 10?2 to 102 rad/s. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 78–91, 2005  相似文献   

16.
Poly‐α‐olefins ranging from poly‐1‐pentene to poly‐1‐octadecene with narrow polydispersities were synthesized with (CH3)2Si(2‐methylbenz[e]indenyl)2ZrCl2 and methylaluminoxane at polymerization temperatures (Tp 's) ranging from −15 to 180 °C and were characterized by gel permeation chromatography, NMR spectroscopy, and differential scanning calorimetry. The molar masses of the homopolymers obtained with (CH3)2Si(2‐methylbenz[e]indenyl)2ZrCl2 were notably higher than those of poly‐α‐olefins synthesized with other zirconium‐based metallocenes under similar conditions. The temperature dependence of the molar mass distribution of the poly‐α‐olefins can be described by a common exponential decay function regardless of the investigated monomer. At Tp 's ranging from 20 to 100 °C, moderate isotacticity prevailed, but outside this temperature range, the polymers were less stereoregular. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2333–2339, 2000  相似文献   

17.
A series of novel bis(phenoxy)phthalimidine-containing poly(amide-imide)s III were synthesized by the direct polycondensation of 3,3-bis[4-(4-aminophenoxy)phenyl]phthalimidine (BAPP) with various aromatic bis(trimellitimide)s in N-methyl-2-pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. Poly(amide-imide)s III , having inherent viscosities up to 1.36 dL/g, were obtained in quantitative yields. All resulting polymers showed an amorphous nature and were readily soluble in polar solvents such as NMP and N,N-dimethylacetamide. All the soluble poly(amide-imide)s afforded transparent, flexible, and tough films. The glass transition temperatures of these polymers were in the range of 267–322°C and the 10% weight loss temperatures were above 490°C in nitrogen. Some properties of poly(amide-imide)s III were compared with those of the corresponding isomeric poly(amide-imide)s III′ prepared from 3,3-[4-(4-trimellitimidophenoxy)phenyl]-phthalimidine and various aromatic diamines. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
Summary: Poly(arylene ether amine)s were synthesized by a nucleophilic aromatic substitution polycondensation of bis[4‐fluoro‐3‐(trifluoromethyl)phenyl]amine with several bisphenols. Even though the monomer has an electron‐donating diphenylamine moiety, which normally deactivates a nucleophilic aromatic substitution (SNAr) reaction, the polymerization proceeded by a SNAr reaction to give high‐molecular‐weight polymers. The polymers show good solubility in common organic solvents and have Tgs in the range of 123 °C to 177 °C.

High‐molecular‐weight poly(arylene ether amine)s synthesized by a SNAr reaction with the monomer containing an electron‐donating diphenylamine moiety.  相似文献   


19.
N-Carbazolylacetylene (CzA) was polymerized in the presence of various transition metal catalysts including WCl6, MoCl5, [Rh(NBD)Cl]2, and Fe(acac)3 to give polymers in good yields. The polymers produced with W catalysts were dark purple solids and soluble in organic solvents such as toluene, chloroform, etc. The highest weight-average molecular weight of poly(CzA) reached about 4 × 104. In the UV–visible spectrum in CHCl3, poly(CzA) exhibited an absorption maximum around 550 nm (εmax = 4.0 × 103 M−1 cm−1) and the cutoff wavelength was 740 nm, showing a large red shift compared with that of poly(phenylacetylene) [poly(PA)]. Poly(CzA) began to lose weight in TGA under air at 310°C, being thermally more stable than poly(PA) and poly[3-(N-carbazolyl)-1-propyne]. Poly(CzA) showed a third-order susceptibility of 18 × 10−12 esu, which was 2 orders larger than that of poly(PA). © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2489–2492, 1998  相似文献   

20.
The synthesis and polymerization of several silphenylene siloxane polymer precursors containing a perfluoroalkylsegment in the backbone was carried out. The molecular weight characteristics of polymers from 1,3-bis[p(-hydroxydimethylsilyl)phenyl]hexafluoropropane and 1,3-bis[p(-dimethylaminodimethylsilyl)phenyl]hexafluoropropane were studied as a function of polymerization conditions. Polymers containing the dodecafluorohexane chain segment were also prepared. Polymers having inherent viscosities of 0.55 to 0.9 were obtained. The polymers crosslinked at room temperature to thermoset elastomers which were characterized by improved thermal and oxidative stability over dimethylsilicones. Room temperature swelling of the experimental polymers hydrocarbon solvents was also much lower than that of dimethylsilicones. The polymers containing the (CF2)3 and (CF2)6 linkages had glass transition points of ?12°C and ?34°C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号