首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we consider the Dirichlet and impedance boundary value problems for the Helmholtz equation in a non‐locally perturbed half‐plane. These boundary value problems arise in a study of time‐harmonic acoustic scattering of an incident field by a sound‐soft, infinite rough surface where the total field vanishes (the Dirichlet problem) or by an infinite, impedance rough surface where the total field satisfies a homogeneous impedance condition (the impedance problem). We propose a new boundary integral equation formulation for the Dirichlet problem, utilizing a combined double‐ and single‐layer potential and a Dirichlet half‐plane Green's function. For the impedance problem we propose two boundary integral equation formulations, both using a half‐plane impedance Green's function, the first derived from Green's representation theorem, and the second arising from seeking the solution as a single‐layer potential. We show that all the integral equations proposed are uniquely solvable in the space of bounded and continuous functions for all wavenumbers. As an important corollary we prove that, for a variety of incident fields including an incident plane wave, the impedance boundary value problem for the scattered field has a unique solution under certain constraints on the boundary impedance. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
The dynamic contact problem of the motion of a flat punch on the boundary of an elastic half-plane is considered. During motion, the punch deforms the elastic half-plane, penetrating it in such a manner that its base remains parallel to the boundary of the half-plane at each instant of time. In movable coordinates connected to the moving punch, the contact problem reduces to solving a two-dimensional integral equation, whose two-dimensional kernel depends on the difference between the arguments for each of the variables. An approximate solution of the integral equation of the problem is constructed in the form of a Neumann series, whose zeroth term is represented in the form of the superposition of the solutions of two-dimensional integral equations on the coordinate semiaxis minus the solution of the integral equation on the entire axis. This approach provides a way to construct the solution of the two-dimensional integral equation of the problem in four velocity ranges of motion of the punch, which cover the entire spectrum of its velocities, as well as to perform a detailed analysis of the special features of the contact stresses and vertical displacements of the free surface on the boundary of the contract area. An approximate method for solving the integral equation, which is based on a special approximation of the integrand of the kernel of the integral equation in the complex plane, is proposed for obtaining effective solutions of the problem that do not contain singular quadratures.  相似文献   

3.
We prove unique existence of solution for the impedance (or third) boundary value problem for the Helmholtz equation in a half-plane with arbitrary L boundary data. This problem is of interest as a model of outdoor sound propagation over inhomogeneous flat terrain and as a model of rough surface scattering. To formulate the problem and prove uniqueness of solution we introduce a novel radiation condition, a generalization of that used in plane wave scattering by one-dimensional diffraction gratings. To prove existence of solution and a limiting absorption principle we first reformulate the problem as an equivalent second kind boundary integral equation to which we apply a form of Fredholm alternative, utilizing recent results on the solvability of integral equations on the real line in [5]. © 1997 B. G. Teubner Stuttgart–John Wiley & Sons Ltd.  相似文献   

4.
The first three-dimensional boundary value problem is considered for the basic equations of statics of the elastic mixture theory in the finite and infinite domains bounded by the closed surfaces. It is proved that this problem splits into two problems whose investigation is reduced to the first boundary value problem for an elliptic equation which structurally coincides with an equation of statics of an isotropic elastic body. Using the potential method and the theory of Fredholm integral equations of second kind, the existence and uniqueness of the solution of the first boundary value problem is proved for the split equation.  相似文献   

5.

A nonlinear integro-ordinary differential equation built up by a linear ordinary differential operator of n th order with constant coefficients and a quadratic integral term is dealt with. The integral term represents the so-called autocorrelation of the unknown function. Applying the Fourier cosine transformation, the integral-differential equation is reduced to a quadratic boundary value problem for the complex Fourier transform of the solution in the upper half-plane. This problem in turn is reduced to a linear boundary value problem which can be solved in closed form. There are infinitely many solutions of the integral-differential equation depending on the prescribed zeros of a function related to the complex Fourier transform.  相似文献   

6.
The paper is concerned with the model of an elastic body in the form of a half-plane whose boundary is subjected to periodic loading. It is assumed that there exists an additional surface stress, which is characteristic of nanometer-sized bodies and which obeys the laws of surface elasticity theory. With the use of the boundary properties of analytical functions and the Goursat-Kolosov complex potentials, the boundary value problem in its general setting with an arbitrary load is reduced to a hypersingular integral equation with respect to the derivative of the surface stress. For a periodic load, the solution of this equation is obtained in the form of a Fourier series. The effect of the surface stress upon the stress state of the boundary of the half-plane is examined with independent action of periodically distributed tangential and normal loads. In particular, the size effect was discovered, which is manifested in the dependence of stresses versus the period of loading within several dozens of nanometers. Normal loads are shown to be responsible for tangential stresses on the boundary, which are zero in the classical solution.  相似文献   

7.
We consider a linear integral equation with a hypersingular integral treated in the sense of the Hadamard finite value. This equation arises when solving the Neumann boundary value problem for the Laplace equation with the use of the representation of the solution in the form of a double layer potential. We study the case in which an exterior or interior boundary value problem is solved in a domain whose boundary is a smooth closed surface and the integral equation is written out on that surface. For the numerical solution of the integral equation, the surface is approximated by spatial polygons whose vertices lie on the surface. We construct a numerical scheme for solving the integral equation on the basis of such an approximation to the surface with the use of quadrature formulas of the type of the method of discrete singularities with regularization. We prove that the numerical solutions converge to the exact solution of the hypersingular integral equation uniformly on the grid.  相似文献   

8.
该文讨论半平面上有局部扰动情况下的散射问题.通过位势理论,应用边界积分方程的方法研究了该问题解的存在与唯一性.主要方法是运用对称反射,使该无界区域上的散射问题变成一个有界区域上的散射问题,只是这一有界区域的边界不光滑.通过仔细分析相应的边界积分算子,作者得到了其解的存在与唯一性.  相似文献   

9.
We consider a linear integral equation with a hypersingular integral treated in the sense of the Hadamard finite value. This equation arises in the solution of the Neumann boundary value problem for the Laplace equation with a representation of a solution in the form of a double-layer potential. We consider the case in which the interior or exterior boundary value problem is solved in a domain; whose boundary is a smooth closed surface, and an integral equation is written out on that surface. For the integral operator in that equation, we suggest quadrature formulas like the method of vortical frames with a regularization, which provides its approximation on the entire surface for the use of a nonstructured partition. We construct a numerical scheme for the integral equation on the basis of suggested quadrature formulas, prove an estimate for the norm of the inverse matrix of the related system of linear equations and the uniform convergence of numerical solutions to the exact solution of the hypersingular integral equation on the grid.  相似文献   

10.
In a half-plane, a homogeneous Dirichlet boundary value problem for an inhomogeneous singularly perturbed convection–diffusion equation with constant coefficients and convection directed orthogonally away from the boundary of the half-plane is considered. Assuming that the right-hand side of the equation belongs to the space Cλ, 0 < λ < 1, and the solution is bounded at infinity, an unimprovable estimate of the solution is obtained in a corresponding Hölder norm (anisotropic with respect to a small parameter).  相似文献   

11.
The problem of the half-plane, in which a finite crack emerges orthogonally at the boundary, is studied. On the edges of the crack a self-balancing load is applied. A detailed investigation is carried out for an integral equation with respect to the unknown derivative of the displacement jump, to which the problem can be reduced. The exact solution of the integral equation is constructed with the aid of the Mellin transform and the Riemann boundary value problem for the halfplane. The asymptotic behavior of the solution at both ends of the crack is elucidated. First the asymptotic behavior of the solution at the point of emergence of the crack is obtained and the dependence of this asymptotic behavior on the type of the load is established. For a special form of the load one obtains a simple expression of the stress intensity coefficient. In the case of a general load, the asymptotic behavior is used for the construction of an effective approximate solution on the basis of the method of orthogonal polynomials. As a result, the problem reduces to an infinite algebraic system, solvable by the reduction method.Translated from Dinamicheskie Sistemy, No. 4, pp. 45–51, 1985.  相似文献   

12.
各向异性半平面与一各向同性长条的焊接问题   总被引:2,自引:0,他引:2  
本文利用平面弹性复变方法和解析函数边值问题的基本理论以及积分方程论,研究了各向异性半平面与一各向同性长条的焊接问题,给出了应力分布封闭形式的解。  相似文献   

13.
We consider the Dirichlet and Robin boundary value problems for the Helmholtz equation in a non‐locally perturbed half‐plane, modelling time harmonic acoustic scattering of an incident field by, respectively, sound‐soft and impedance infinite rough surfaces.Recently proposed novel boundary integral equation formulations of these problems are discussed. It is usual in practical computations to truncate the infinite rough surface, solving a boundary integral equation on a finite section of the boundary, of length 2A, say. In the case of surfaces of small amplitude and slope we prove the stability and convergence as A→∞ of this approximation procedure. For surfaces of arbitrarily large amplitude and/or surface slope we prove stability and convergence of a modified finite section procedure in which the truncated boundary is ‘flattened’ in finite neighbourhoods of its two endpoints. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
The plane elasticity problem includes plane strain problem and plane stress problem which are widely applied in mechanics and engineering. In this article, we first reduce the plane elasticity problem in the upper half-plane into natural boundary integral equation and then apply wavelet-Galerkin method to deal with the numerical solution of the natural boundary integral equation. The test and trial functions used are the scaling basis functions of Shannon wavelet. In our fast algorithm, the computational formulae of entries of the stiffness matrix yield simple close-form and only 3 K entries need to be computed for one 4 K ‐ 4 K stiffness matrix.  相似文献   

15.
We study the numerical solution of a linear hypersingular integral equation arising when solving the Neumann boundary value problem for the Laplace equation by the boundary integral equation method with the solution represented in the form of a double layer potential. The integral in this equation is understood in the sense of Hadamard finite value. We construct quadrature formulas for the integral occurring in this equation based on a triangulation of the surface and an application of the linear approximation to the unknown function on each of the triangles approximating the surface. We prove the uniform convergence of the quadrature formulas at the interpolation nodes as the triangulation size tends to zero. A numerical solution scheme for this integral equation based on the suggested quadrature formulas and the collocation method is constructed. Under additional assumptions about the shape of the surface, we prove a uniform estimate for the error in the numerical solution at the interpolation nodes.  相似文献   

16.
A new method is given for solving the exterior Robin problem for the Helmholtz equation. The problem is reformulated as a new integral equation which is continuous as the field point approaches the boundary. It is shown that its solution can be represented as a convergent Neumann series for convex surfaces, for small values of the wave number. Examples are included which illustrate the method.  相似文献   

17.
We consider a nonlocal initial–boundary value Bitsadze–Samarskii problem for a spatially one-dimensional parabolic second-order system in a semibounded domain with nonsmooth lateral boundary. The boundary integral equation method is used to construct a classical solution of this problem under the condition that the vector function on the right-hand side in the nonlocal boundary condition only has a continuous derivative of order 1/2 vanishing at t = 0. The smoothness of the solution is studied.  相似文献   

18.
We consider a boundary value problem for the stationary diffusion equation outside cuts on the plane. The Dirichlet condition is posed on one side of each cut, and an oblique derivative condition is posed on the other side. We prove existence and uniqueness theorems for the solution of the boundary value problem. We obtain an integral representation of a solution in the form of potentials. The densities of these potentials are found from a system of Fredholm integral equations of the second kind, which is uniquely solvable. We obtain closed asymptotic formulas for the gradient of the solution of the boundary value problem at the endpoints of the cuts.  相似文献   

19.
In this paper we study the application of boundary integral equation methods for the solution of the third, or Robin, boundary value problem for the exterior Helmholtz equation. In contrast to earlier work, the boundary value problem is interpreted here in a weak sense which allows data to be specified in L (?D), ?D being the boundary of the exterior domain which we assume to be Lyapunov of index 1. For this exterior boundary value problem, we employ Green's theorem to derive a pair of boundary integral equations which have a unique simultaneous solution. We then show that this solution yields a solution of the original exterior boundary value problem.  相似文献   

20.
We consider a linear integral equation with a supersingular integral treated in the sense of the Hadamard finite value, which arises in the solution of the Neumann boundary value problem for the Laplace equation with the representation of the solution in the form of a doublelayer potential. We consider the case in which the exterior boundary value problem is solved outside a plane surface (a screen). For the integral operator in the above-mentioned equation, we suggest quadrature formulas of the vortex loop method with regularization, which provide its approximation on the entire surface when using an unstructured partition. In the problem in question, the derivative of the unknown density of the double-layer potential, as well as the errors of quadrature formulas, has singularities in a neighborhood of the screen edge. We construct a numerical scheme for the integral equation on the basis of the suggested quadrature formulas and prove an estimate for the norm of the inverse matrix of the resulting system of linear equations and the uniform convergence of the numerical solutions to the exact solution of the supersingular integral equation on the grid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号