首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relative rate technique has been used to measure the hydroxyl radical (OH) reaction rate constant of ethyl 3-ethoxypropionate (EEP, CH3CH2(SINGLE BOND)O(SINGLE BOND)CH2CH2C(O)O(SINGLE BOND)CH2CH3). EEP reacts with OH with a bimolecular rate constant of (22.9±7.4)×10−12 cm3 molecule−1s−1 at 297±3 K and 1 atmosphere total pressure. In order to more clearly define EEP's atmospheric reaction mechanism, an investigation into the OH+EEP reaction products was also conducted. The OH+EEP reaction products and yields observed were: ethyl glyoxate (EG, 25±1% HC((DOUBLE BOND)O)C((DOUBLE BOND)O)(SINGLE BOND)O(SINGLE BOND)CH2CH3), ethyl (2-formyl) acetate (EFA, 4.86±0.2%, HC((DOUBLE BOND)O)(SINGLE BOND)CH2(SINGLE BOND)C((DOUBLE BOND)O)(SINGLE BOND)O(SINGLE BOND)CH2CH3), ethyl (3-formyloxy) propionate (EFP, 30±1%, HC((DOUBLE BOND)O)(SINGLE BOND)O(SINGLE BOND)CH2CH2(SINGLE BOND)C((DOUBLE BOND)O)(SINGLE BOND)O(SINGLE BOND)CH2CH3), ethyl formate (EF, 37±1%, HC((DOUBLE BOND)O)O(SINGLE BOND)CH2CH3), and acetaldehyde (4.9±0.2%, HC((DOUBLE BOND)O)CH3). Neither the EEP's OH rate constant nor the OH/EEP reaction products have been previously reported. The products' formation pathways are discussed in light of current understanding of oxygenated hydrocarbon atmospheric chemistry. © 1997 John Wiley & Sons, Inc.  相似文献   

2.
The polycarbosilanes (PCS) with meta-linkage bending unit ((SINGLE BOND)Me2Si(SINGLE BOND)m(SINGLE BOND)C6H4(SINGLE BOND)Me2Si(SINGLE BOND)CH2CH2(SINGLE BOND)) were successfully synthesized in mild conditions by hydrosilylation in the presence of [Pt{(CH2(DOUBLE BOND)CHSiMe2)2O}2]. The PCS obtained were soluble in various solvents owing to the lowering of the crystallinity. These properties are well compared with those of the PCS [(SINGLE BOND)Me2Si(SINGLE BOND)p(SINGLE BOND)C6H4(SINGLE BOND)Me2Si(SINGLE BOND)CH2CH2(SINGLE BOND)]n. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
1,3,2-Benzimidazaborole, 1,3,2-benzoxaborole, and 1,3,2-benzothiazaborole were synthesized from the corresponding 2-benzazole N(SINGLE BOND)BH3 and 2-benzazole S(SINGLE BOND)BH3 adducts through a reductive transposition from the isolobal fragment X(SINGLE BOND)C(sp2) (DOUBLE BOND) N(sp2) (SINGLE BOND) B(sp3) (X (DOUBLE BOND) N, O, S) to the fragment X(SINGLE BOND)B(sp2) (DOUBLE BOND) N(sp2) (SINGLE BOND) C(sp3). N(SINGLE BOND)BH3 substitution shifts to lower frequencies 4-H, C-3a, and C-7a resonances. The X-ray diffraction analysis of 2-(o-methoxyphenyl)benzothiazole N(SINGLE BOND)BH3 adduct is reported. Two new tetracyclic boron-bridged compounds were observed as by-products (6,9-(ethyl)-diaza-2-oxa-1-bora[3,4,7,8]-dibenzobycyclo[4.3.0]-nona-3,7-diene, 6d, and 8-aza-9-oxa-2-thia-1-bora-[3,4,7,8]dibenzobycyclo[3.4.0]nona-3,7-diene, 15d, when 2-(o-methoxyphenyl)-1-ethylbenzimidazole-BH3 6b and 2-(o-methoxyphenyl)-benzothiazole-BH3 15b adducts were heated. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
Three-membered ring (3MR) forming processes of X(SINGLE BOND)CH2(SINGLE BOND)CH2(SINGLE BOND)F and CH2(SINGLE BOND)C((SINGLE BOND)Y)(SINGLE BOND)CH2(SINGLE BOND)F (X(DOUBLE BOND)CH2, O, or S and Y(DOUBLE BOND)0 or S) through a gas phase neighboring group mechanism (SNi) are studied theoretically using the ab initio molecular orbital method with the 6–31+G* basis set. When electron correlation effects are considered, the activation (ΔG) and reaction energies (ΔG0) are lowered by ca. 10 kcal mol−1, indicating the importance of the electron correlation effect in these reactions. The contribution of entropy of activation (−TΔS) at 298 K to ΔG is very small, and the reactions are enthalpy controlled. The ΔG and ΔG0 values for these ring closure processes largely depend on the stabilities of the reactants and the heteroatom acting as a nucleophilic center. The Bell–Evans–Polanyi principle applies well to all these reaction series. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1773–1784, 1997  相似文献   

5.
Novel oligomers possessing a backbone formed of ((TRIPLE BOND)Si(SINGLE BOND)CH2(SINGLE BOND)Si(TRIPLE BOND)) and (SINGLE BOND)Si(SINGLE BOND)n units were prepared by the copolycondensation of bis(chlorosilyl)methanes and various dichlorosilanes in the presence of sodium, in refluxing toluene. The effect of the respective molar ratios of comonomers on the yields and the structure of the copolymers was investigated. The role of substituents on silicon atoms in the ability of these materials to provide convenient ceramic precursors upon pyrolysis was examined. When (TRIPLE BOND)Si(SINGLE BOND)H bonds were present, thermal cross-linking was readily performed and ceramics possessing variable C/Si ratios were prepared.  相似文献   

6.
The ylidyl substituent of the chlorophosphane Ph3P(DOUBLE BOND)CAr(SINGLE BOND)PRCl exerts a strong influence on the P(SINGLE BOND)Cl bond. An X-ray structure investigation of the representative with Ar(DOUBLE BOND)Ph, R(DOUBLE BOND)Me reveals the longest P(SINGLE BOND)Cl bond ever observed for an acyclic chlorophosphine (226.2(1) pm). It is connected to a conformation that allows an effective negative hyperconjugation. The ylidyl chlorophosphanes with an amino group R are covalent in benzene but become more or less ionic in dichloromethane solution. The solvent-dependent dissociation equilibrium can be followed by 31P NMR spectra. In case of an enamine-derived ylidyl chlorophosphane, the equilibrium shifts almost completely from the covalent to the ionic side within a rather narrow range of solvent composition (20 to 70 vol % dichloromethane). © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Kinetic isotope effects of deuterium and oxygen-18 were measured on fragmentation of syn-3-ethoxy ( 1a ) and syn-3-(N,N-diethylamino) ( 1b ) 2,3-oxaphosphabicyclo[2.2.2]octene derivatives in 1,2-dichloroethane at 100°C. The secondary deuterium isotope effect on hydrogen adjacent to the P(SINGLE BOND)C bond was found to be 1.060 ± 0.008 for 1a and 1.081 ± 0.009 for 1b . The kinetic oxygen isotope effect on the bridge P(SINGLE BOND)O(SINGLE BOND)C is 0.9901 ± 0.0016 for 1a . The data indicate an unsymmetrical transition state for retrocycloaddition extrusion of the metaphosphate moiety, with the breakage of the C(SINGLE BOND)P bond and formation of the P (DOUBLE BOND) O bond more advanced than the C(SINGLE BOND)O breakage. A synthesis of 1a and 1b labeled with deuterium is described. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
Ab initio calculations at the Hartree-Fock (HF) and the second-order Møller-Plesset (MP2) levels are performed for finite polyenes C2nH2n+2 to estimate the structure and dimerization energy (Edim) of polyacetylene. The effect of electron correlation on the structure of finite polyenes is analyzed in detail. The MP3/6–31G* C(DOUBLE BOND)C and C(SINGLE BOND)C bond lengths in polyacetylene are estimated by a simple extrapolation method using empirical corrections for the MP2 deficiencies, yielding values [C(DOUBLE BOND)C(MP3) ∼ 1.36 Å and C(SINGLE BOND)C(MP3) ∼ 1.44 Å] that are in a good agreement with experiment (C(DOUBLE BOND)C (DOUBLE BOND) 1.36 Å and C(SINGLE BOND)C (DOUBLE BOND) 1.44–1.45 Å). Comparison is also made with other theoretical estimates of polyacetylene structure. Edim is approximated by the energy difference between the equilibrium and hypothetical polyenic structures. It is estimated that Edim is ∼ 1.4–1.5 kcal/mol (0.06–0.07 eV) per carbon-carbon bond at the HF level with 4–21G and 6–31G* basis sets and ∼ 0.3–0.5 kcal/mol (0.013–0.022 eV) at the MP2 level with the 6–31G* basis set. It is concluded that Edim is very sensitive to the level of approximation employed so that a proper treatment of electron correlation is essential to obtain a reliable estimate of the dimerization energy. © 1997 John Wiley & Sons, Inc.  相似文献   

9.
Extensive semiempirical SCF-MO calculations confirm that the exo-anomeric effect in methyl O-, N- and S-glycosides deals with an interaction of π-character along the C1(SINGLE BOND)Y1 bond in a X5(SINGLE BOND)C1(SINGLE BOND)Y1(SINGLE BOND)Me moiety (where X = O, S; Y = O, NH, S). The bond-order between orbitals of pπ symmetry on C1 and Y1 serves as a measure of all significant molecular orbital interactions responsible for the exo-anomeric stabilization. The set of simpler compounds X(SINGLE BOND)CH2(SINGLE BOND)Y (X = OH, SH, SeH, TeH; Y = OH, SH, SeH, TeH, NH2) on which the anomeric effect has been well studied was also calculated and it is noticeable that the π-bond-orders accord with the results of other analyses of the ab initio wave function accounting for the anomeric effect. Although the AM1 and the PM3 parameterizations of MNDO do not accurately reproduce the anomeric effect energetic, they do reproduce accordingly the expected variations in the molecular conformations of complex carbohydrates, and thus it follows that there are maximal π-bond-orders for the synclinal arrangement around the C1(SINGLE BOND)Y1 bond. In addition, the π-bond-orders show the same behavior for conformational preferences around the C1(SINGLE BOND)C′1 and the C5(SINGLE BOND)C6 bonds in methyl C-glycosides and in the hydroxymethyl group of α-D -glucose, respectively. © 1996 by John Wiley & Sons, Inc.  相似文献   

10.
The rate constant for the reaction of the hydroxyl radical with 1,1,1,3,3-pentafluorobutane (HFC-365mfc) has been determined over the temperature range 278–323K using a relative rate technique. The results provide a value of k(OH+CF3CH2CF2CH3)=2.0×10−12exp(−1750±400/T) cm3 molecule−1 s−1 based on k(OH+CH3CCl3)=1.8×10−12 exp (−1550±150/T) cm3 molecule−1 s−1 for the rate constant of the reference reaction. Assuming the major atmospheric removal process is via reaction with OH in the troposphere, the rate constant data from this work gives an estimate of 10.8 years for the tropospheric lifetime of HFC-365mfc. The overall atmospheric lifetime obtained by taking into account a minor contribution from degradation in the stratosphere, is estimated to be 10.2 years. The rate constant for the reaction of Cl atoms with 1,1,1,3,3-pentafluorobutane was also determined at 298±2 K using the relative rate method, k(Cl+CF3CH2CF2CH3)=(1.1±0.3)×10−15 cm3 molecule−1 s−1. The chlorine initiated photooxidation of CF3CH2CF2CH3 was investigated from 273–330 K and as a function of O2 pressure at 1 atmosphere total pressure using Fourier transform infrared spectroscopy. Under all conditions the major carbon-containing products were CF2O and CO2, with smaller amounts of CF3O3CF3. In order to ascertain the relative importance of hydrogen abstraction from the (SINGLE BOND)CH2(SINGLE BOND) and (SINGLE BOND)CH3 groups in CF3CH2CF2CH3, rate constants for the reaction of OH radicals and Cl atoms with the structurally similar compounds CF3CH2CCl2F and CF3CH2CF3 were also determined at 298 K k(OH+CF3CH2CCl2F)=(8±3)×10−16 cm3 molecule−1 s−1; k(OH+CF3CH2CF3)=(3.5±1.5)×10−16 cm3 molecule−1 s−1; k(Cl+CF3CH2CCl2F)=(3.5±1.5)×10−17 cm3 molecule−1 s−1]; k(Cl+CF3CH2CF3)<1×10−17 cm3 molecule−1 s−1. The results indicate that the most probable site for H-atom abstraction from CF3CH2CF2CH3 is the methyl group and that the formation of carbonyl compounds containing more than a single carbon atom will be negligible under atmospheric conditions, carbonyl difluoride and carbon dioxide being the main degradation products. Finally, accurate infrared absorption cross-sections have been measured for CF3CH2CF2CH3, and jointly used with the calculated overall atmospheric lifetime of 10.2 years, in the NCAR chemical-radiative model, to determine the radiative forcing of climate by this CFC alternative. The steady-state Halocarbon Global Warming Potential, relative to CFC-11, is 0.17. The Global Warming Potentials relative to CO2 are found to be 2210, 790, and 250, for integration time-horizons of 20, 100, and 500 years, respectively. © 1997 John Wiley & Sons, Inc.  相似文献   

11.
The synthesis of various phosphoranimines including (CH3OCH2CH2O) (CF3CH2O)2P?N? Si(CH3)3, (CH3OCH2CH2OCH2CH2O) (CF3CH2O)2P?N? Si (CH3)3, (CH3OCH2CH2O)2(CF3CH2O) P?N? Si(CH3)3, and (CH3OCH2CH2OCH2CH2O)(CF3CH2O) P?N? Si(CH3)3 via the Staudinger reaction of (CH3)3SiN3 with the suitably substituted phosphite is reported. These monomers were polymerized using tetra-n-butylammonium fluoride and N-methylimidazole in various solvents at several temperatures. In situ 31P-NMR kinetic studies and Mn versus time studies were also performed for the monomers to understand the propagation mechanism. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
G2 ab initio calculations on all ABX three-membered rings (TMRs) that can be derived from cyclopropane by systematic substitution of the (SINGLE BOND)CH2 groups by (SINGLE BOND)NH or (SINGLE BOND)O groups have been performed. Our results show that the decrease in the A(SINGLE BOND)B bond length as the electronegativity of X increases is significantly larger than that found for the corresponding acyclic analogs. In general, a systematic substitution of the (SINGLE BOND)CH2 groups of cyclopropane by (SINGLE BOND)NH or (SINGLE BOND)O groups implies significant geometric changes that are not reflected in a parallel change of the corresponding conventional ring strain energy (CRSE). When the electronegativity of the groups forming the TMR increases the effect on the CRSE of the system is small, although the charge delocalization inside the ring decreases. The near constancy of the CRSE along the series can be explained in terms of the charge redistribution of the system where the (SINGLE BOND)CH2 groups play a crucial role. There are, however, significant changes in the hydrogenation energies of the TMR investigated; our results show that, when in an ABX three-membered ring, the electronegativity of X increases the hydrogenation energy of A(SINGLE BOND)B bond decreases and vice versa. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 1072–1086, 1998  相似文献   

13.
The equilibrium geometries and transition states for interconversion of the CSiH2 isomers in the singlet electronic ground state are optimized at the MP2 and CCSD(T) levels of theory using a TZ2P basis set. The heats of formation, vibrational frequencies, infrared intensities, and rotational constants are also predicted. There are three energy minima on the CSiH2 potential energy surface. Energy calculations at CCSD(T)/TZ2P(fd) + ZPE predict that the global energy minimum is silavinylidene (1), which is 34.1 kcal mol−1 lower in energy than trans-bent silaacetylene (2) and 84.1 kcal mol−1 more stable than the vinylidene isomer (3). The barrier for rearrangement 2→1 is calculated at the same level of theory to be 5.1 kcal mol−1, while for the rearrangement 3→2 a barrier of 2.7 kcal mol−1 is predicted. The natural bond orbital (NBO) population scheme indicates a clear polarization of the C(SINGLE BOND)Si bonds toward the carbon end. A significant ionic contribution to the C(SINGLE BOND)Si bonds of 1 and 2 is suggested by the NBO analysis. The C(SINGLE BOND)Si bond length of trans-bent silaacetylene (2) is longer than previously calculated [1.665 Å at CCSD(T)/TZ2P)]. The calculated carbon-silicon bond length of 2 is in the middle between the C(SINGLE BOND)Si double bond length of 1 (1.721 Å) and the C(SINGLE BOND)Si triple bond of the linear form HCSiH (4), which is 1.604 Å. Structure 4 is a higher-order saddle point on the potential energy surface. © 1996 by John Wiley & Sons, Inc.  相似文献   

14.
Trivalent-Pentavalent Phosphorus Compounds/Phosphazenes. IV. Preparation and Properties of New N-silylated Diphosphazenes Phosphazeno-phosphanes, R3P = N? P(OR′) 2 (R = CH3, N(CH3)2; R′ = CH2? CF3) react with trimethylazido silane to give N-silylated diphosphazenes, R3P = N? P(OR′)2 = N? Si(CH3)3 compounds decompose by atmospherical air to phosphazeno-phosphonamidic acid esters, R3 P?N? P(O)(O? CH2? CF3)(NH2). Thermolysis of diphosphazene R3P = N? P(OR′) 2 = N? Si(CH3)3 (R = CH3, R′ = CH2? CF3) produces phosphazenyl-phosphazenes [N?P(N?P(CH3)3)OR′] n. The compounds are characterized by elementary analysis, IR-, 1H-, 29Si-, 31P-n.m.r., and mass spectroscopy.  相似文献   

15.
Decenyl (D) and heptyl (H) oxazolines were copolymerized in o-dichlorobenzene solvent using methyl 4-nitrobenzenesulfonate as an initiator. A series of decenyl/heptyl oxazolines random copolymers (or DH copolymers) with a total degree of polymerization of 100 and narrow molecular weight distribution were obtained. These copolymers are considered as the poly(N-acylethylenimine)s with allyl pendant groups randomly attached to the far end of their polymethylene, (SINGLE BOND)(CH2)7(SINGLE BOND), side chains. The polymers were characterized by NMR, FT–IR. Both DSC and x-ray diffractometer demonstrated that the polymers are highly crystalline. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
Ozonolysis of cis- and trans-2-butene isomers were carried out in a 570 l spherical glass vessel in 730 torr synthetic air at 295 ± 3 K. The initial concentrations were 5 to 10 ppmv for the isomers and 2 to 5 ppmv for ozone. Quantitative yields were determined by FTIR spectroscopy for CH3CHO, HCHO, CH4, CH3OH, CO, and CO2. By means of computational subtraction of the spectral contribution of the identified products from the product spectra, residual spectra have been obtained. Formation of 2-butene ozonide, propene ozonide, and l-hydroperoxyethyl formate CH3CH(OOH)(SINGLE BOND)O(SINGLE BOND)CH(O) have been identified in the residual spectra. These products have been shown to be formed in the reactions of the Criegee intermediate CH3CHOO with CH3CHO, HCHO, and HCOOH, respectively. Mechanistic implications and atmospheric relevance of these observations are discussed. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 461–468, 1997.  相似文献   

17.
Kinetics of ϵ-caprolactone (ϵCL) polymerization initiated with diethylaluminum ethoxide in benzene (C6H6) and acetonitrile (CH3CN) as solvents was studied and compared with the previously studied polymerization conducted in tetrahydrofuran (THF) solvent. Kinetic data were analyzed in terms of the kinetic scheme: “propagation with aggregation,” assuming that actually propagating active species (Pn*) aggregate reversibly into the unreactive (dormant) species . The determined equilibrium constants of deaggregation (Kda) decrease with decreasing solvent polarity, namely Kda (in mol2·L−2) = (1.3 ± 0.7)·10−2 (CH3CN), (1.8 ± 0.5)·10−5 (THF), (4.1 ± 0.7)·10−6(C6H6), whereas for the rate constants of propagation the opposite is true, kp (in mol−1·L·s−1) = (7.5 ± 0.3)·10−3 (CH3CN), (3.87 ± 0.01)·10−2 (THF), (8.6 ± 0.9)·10−2 (C6H6) (25°C). The latter effect is explained by a specific solvation (the stronger the higher solvent polarity) of the active species already in the ground state in the elementary reaction of the poly(ϵCL) chain growth: C2H5[OC(O)(CH2)5]nO(SINGLE BOND)Al(C2H5)2 + ϵCL → C2H5[OC(O)(CH2)5]n+1O(SINGLE BOND)Al(C2H5)2. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
Relativistic density functional calculations have been carried out for the group VI transition metal carbonyls M(CO)5L (M=Cr, Mo, W; L=OH2, NH3, PH3, PMe3, N2, CO, OC (isocarbonyl), CS, CH2, CF2, CCl2, NO+). The optimized molecular structures and M(SINGLE BOND)L bond dissociation energies, as well as the metal–carbonyl bond energy of the trans CO group, have been calculated. Besides the marked dependence of the trans M(SINGLE BOND)CO bond length on the type of ligand L, such an effect on the that bond energy is also observed. For the chromium compounds, the trans Cr(SINGLE BOND)CO bond length varies from 184 to 199 pm and its bond energy from 242 to 150 kJ/mol. For the molybdenum compounds, the range is 197 to 216 pm and 253 to 128 kJ/mol and, for tungsten, 198 to 214 pm and 293 to 159 kJ/mol. The observed trends can be explained with the π acceptor strength of the L ligand. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1985–1992, 1997  相似文献   

19.
Abstract

The synthesis of octahedral complexes [SnCl4L2] (L = R2NP(O)(OCH2CF3)(O-p-tolyl): R2N = Me2N (1), Et2N (2), CH2(CH2CH2)2N (3), and O(CH2CH2)2N (4), or L = R2NP(O)(OCH2CF3)(O-p-PhNO2): R2N = Me2N (5), Et2N (6), and O(CH2CH2)2N (7) is described. The new adducts have been characterized by multinuclear (31P, 19F, 119Sn) NMR, IR spectroscopy, and elemental analyses. The solution NMR data show the presence of a mixture of cis and trans isomers. The structure of the complexes in solution was further confirmed by 119Sn NMR spectra, which display a triplet for each isomer, indicating an octahedrally coordinated tin center. The effects of the nature of R and Ar substituents on the donor ability of the P=O group in the ligands R2NP(O)(OCH2CF3)(OAr) were investigated on the basis of 119Sn NMR chemical shifts and used to classify these ligands according to their Lewis basicity.  相似文献   

20.
Three new silicon- and fluorine-containing ligands, namely bis(dimethylamido)(3-triethoxysilylpropylamido)phosphate O=P(NMe2)2NHCH2CH2CH2Si(OEt)3, diphenyl(3-triethoxysilylpropylamido)phosphate O=P(OPh)2NHCH2CH2CH2Si(OEt)3, and tris(3,3,3-trifluoropropyl)phosphine oxide O=P(CH2CH2CF3)3 are synthesized. The erbium and ytterbium complexes with amine, phosphate, and phosphine oxide ligands Ln(NH2R)3Cl3, Ln[O=P(NMe2)2NHR]3Cl3, Ln[O=P(OPh)2NHR]3Cl3 (R=CH2CH2CH2Si(OEt)3), Ln[O=P(OPh)3]3Cl3, Ln[O=P(CH2CH2CF3)3]3Cl3 are produced and their electronic absorption spectra and photoluminescence spectra are studied. The silicon-containing compounds form transparent thermostable films on silicate glass or quartz surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号