首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A variational formulation of the vertically-integrated differential equations for free surface wave motion is presented. A finite element model is derived for solving this nonlinear system of hydrodynamic equations. The time integration scheme employed is discussed and the results obtained demonstrate its good stability and accuracy.Several applications of the model are considered: the first problem is an open channel of uniform depth and the second an open channel of linearly varying depth. The ‘inflow’ boundary condition is prescribed in terms of the velocity which represents a wavemaker and/or a flow source, while the ‘outflow’ boundary condition is specified in terms of the water elevation. The outflow condition is adjusted for two cases, a reflecting boundary (finite channel) and a non-reflecting boundary (open-ended channel). The latter boundary condition is examined in some detail and the results obtained show that the numerical model can produce the non-reflecting boundary that is similar to the analytical radiation condition for waves. Computational results for a third problem, involving wave reflection from a submerged cylinder, are also presented and compared with both experimental data and analytical predictions.The simplicity and the performance of the computational model suggest that free surface waves can be simulated without excessively complicated numerical schemes. The ability of the model to simulate outflow boundary conditions properly is of special importance since these conditions present serious problems for many numerical algorithms.  相似文献   

2.
The numerical investigation of shock phenomena in gas or liquid media where enthalpy is the preferred thermodynamic variable poses special problems. When an expression for internal energy is available, the usual procedure is to employ a splitting scheme to remove source terms from the Euler equations, then upwind-biased shock capturing algorithms are built around the Riemann problem for the conservative system which remains. However, when the governing equations arc formulated in terms of total enthalpy, treatment of a pressure time derivative as a source term leads to a Riemann problem for a system where one equation is not a conservation law. The present research establishes that successful upwind-biased shock capturing schemes can be based upon the pseudo-conservative system. A new averaging scheme for solving the associated Riemann problem is developed. The method is applied to numerical simulations of shock wave propagation in pure water.  相似文献   

3.
针对含源项的双曲守恒方程给出了一种新的有限体积格式.经典的有限体积格式不能正确地模拟对流通量项和外力之间的平衡所产生的动力学问题.为解决这个问题,仿照经典的HLL近似Riemann求解器设计思路设计了含源项的近似Riemann求解器.针对含重力源项的一维流体Euler方程和理想磁流体方程,通过对通量计算格式的修正得到了保平衡HLL格式(WB-HLL),并给出了保平衡的证明.针对一维Euler方程和理想磁流体给出了两个算例,比较了传统HLL格式和提出的WB-HLL格式的计算精度.计算结果表明,WB-HLL格式精度更高,收敛更快.  相似文献   

4.
In this paper, we design stable and accurate numerical schemes for conservation laws with stiff source terms. A prime example and the main motivation for our study is the reactive Euler equations of gas dynamics. Furthermore, we consider widely studied scalar model equations. We device one-step IMEX (implicit-explicit) schemes for these equations that treats the convection terms explicitly and the source terms implicitly.For the non-linear scalar equation, we use a novel choice of initial data for the resulting Newton solver and obtain correct propagation speeds, even in the difficult case of rarefaction initial data. For the reactive Euler equations, we choose the numerical diffusion suitably in order to obtain correct wave speeds on under-resolved meshes.We prove that our implicit-explicit scheme converges in the scalar case and present a large number of numerical experiments to validate our scheme in both the scalar case as well as the case of reactive Euler equations.Furthermore, we discuss fundamental differences between the reactive Euler equations and the scalar model equation that must be accounted for when designing a scheme.  相似文献   

5.
A well-balanced Godunov-type finite volume algorithm is developed for modelling free-surface shallow flows over irregular topography with complex geometry. The algorithm is based on a new formulation of the classical shallow water equations in hyperbolic conservation form. Unstructured triangular grids are used to achieve the adaptability of the grid to the geometry of the problem and to facilitate localised refinement. The numerical fluxes are calculated using HLLC approximate Riemann solver, and the MUSCL-Hancock predictor–corrector scheme is adopted to achieve the second-order accuracy both in space and in time where the solutions are continuous, and to achieve high-resolution results where the solutions are discontinuous. The novelties of the algorithm include preserving well-balanced property without any additional correction terms and the wet/dry front treatments. The good performance of the algorithm is demonstrated by comparing numerical and theoretical results of several benchmark problems, including the preservation of still water over a two-dimensional hump, the idealised dam-break flow over a frictionless flat rectangular channel, the circular dam-break, and the shock wave from oblique wall. Besides, two laboratory dam-break cases are used for model validation. Furthermore, a practical application related to dam-break flood wave propagation over highly irregular topography with complex geometry is presented. The results show that the algorithm can correctly account for free-surface shallow flows with respect to its effectiveness and robustness thus has bright application prospects.  相似文献   

6.
Some Reaction‐Diffusion equations present solutions of the traveling wave form. In this work, we present an implicit numerical scheme based on finite difference originally proposed to solve hyperbolic equations. Then, this method is improved using a pseudospectral approach to discretize the spatial variable. The results prove that this new scheme is useful to solve equations of the parabolic type which presents traveling wave solutions. In particular, problems where a reduction in the number of discretization points and an increase of the size of the time step play an important role in their solution are considered. The implicit scheme presented involves the solution of linear systems only. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 86–105, 2016  相似文献   

7.
A generalization and extension of a finite difference method for calculating numerical solutions of the two dimensional shallow water system of equations is investigated. A previously developed non-oscillatory relaxation scheme is generalized as to included problems with source terms in two dimensions, with emphasis given to the bed topography, resulting to a class of methods of first- and second-order in space and time. The methods are based on classical relaxation models combined with TVD Runge–Kutta time stepping mechanisms where neither Riemann solvers nor characteristic decompositions are needed. Numerical results are presented for several test problems with or without the source term present. The wetting and drying process is also considered. The presented schemes are verified by comparing the results with documented ones.  相似文献   

8.
In this paper, unsteady motions generated by seismic-type excitation are simulated by a 2D depth-averaged mathematical model based on the classic shallow water approximation. A suitable time-dependent forcing term is added in the governing equations, and these are solved by a MUSCL-type shock-capturing finite volume scheme with a splitting treatment of the source term. The HLL approximate Riemann solver is used to estimate the numerical fluxes. The accuracy of the numerical scheme is assessed by comparison with novel exact solutions of test cases concerning sinusoidally-generated sloshing in a prismatic tank, a rectangular open channel, and a parabolic basin. A sensitivity analysis is performed on the influence of the relevant dimensionless parameters. Moreover, numerical results are validated against experimental data available in literature concerning shallow water sloshing in a swaying tank. Finally, real‐scale applications to a reservoir created by a dam and an urban water-supply storage tank are presented. The results show that the model provides accurate solutions of the shallow water equations with a seismic-type source term and can be effectively adopted to predict the main flow features of the unsteady motion induced by horizontal seismic acceleration when the long wave assumption is valid.  相似文献   

9.
Particular solutions that correspond to inhomogeneous driving terms in the linearized Boltzmann equation for the case of a binary mixture of rigid spheres are reported. For flow problems (in a plane channel) driven by pressure, temperature, and density gradients, inhomogeneous terms appear in the Boltzmann equation, and it is for these inhomogeneous terms that the particular solutions are developed. The required solutions for temperature and density driven problems are expressed in terms of previously reported generalized (vector-valued) Chapman–Enskog functions. However, for the pressure-driven problem (Poiseuille flow) the required particular solution is expressed in terms of two generalized Burnett functions defined by linear integral equations in which the driving terms are given in terms of the Chapman–Enskog functions. To complete this work, expansions in terms of Hermite cubic splines and a collocation scheme are used to establish numerical solutions for the generalized (vector-valued) Burnett functions.  相似文献   

10.
Particular solutions that correspond to inhomogeneous driving terms in the linearized Boltzmann equation for the case of a binary mixture of rigid spheres are reported. For flow problems (in a plane channel) driven by pressure, temperature, and density gradients, inhomogeneous terms appear in the Boltzmann equation, and it is for these inhomogeneous terms that the particular solutions are developed. The required solutions for temperature and density driven problems are expressed in terms of previously reported generalized (vector-valued) Chapman–Enskog functions. However, for the pressure-driven problem (Poiseuille flow) the required particular solution is expressed in terms of two generalized Burnett functions defined by linear integral equations in which the driving terms are given in terms of the Chapman–Enskog functions. To complete this work, expansions in terms of Hermite cubic splines and a collocation scheme are used to establish numerical solutions for the generalized (vector-valued) Burnett functions.  相似文献   

11.
We propose a new well-balanced unstaggered central finite volume scheme for hyperbolic balance laws with geometrical source terms. In particular we construct a new one and two-dimensional finite volume method for the numerical solution of shallow water equations on flat/variable bottom topographies. The proposed scheme evolves a non-oscillatory numerical solution on a single grid, avoids the time consuming process of solving Riemann problems arising at the cell interfaces, and is second-order accurate both in space and time. Furthermore, the numerical scheme follows a well-balanced discretization that first discretizes the geometrical source term according to the discretization of the flux terms, and then mimics the surface gradient method and discretizes the water height according to the discretization of the water level. The resulting scheme exactly satisfies the C-property at the discrete level. The proposed scheme is then applied and classical one and two-dimensional shallow water equation problems with flat or variable bottom topographies are successfully solved. The obtained numerical results are in good agreement with corresponding ones appearing in the recent literature, thus confirming the potential and efficiency of the proposed method.  相似文献   

12.
We propose a simple numerical method for calculating both unsteady and steady state solution of hyperbolic system with geometrical source terms having concentrations. Physical problems under consideration include the shallow water equations with topography,and the quasi one-dimensional nozzle flows. We use the interface value, rather than the cell-averages, for the source terms, which results in a well-balanced scheme that can capture the steady state solution with a remarkable accuracy. This method approximates the source terms via the numerical fluxes produced by an (approximate) Riemann solver for the homogeneous hyperbolic systems with slight additional computation complexity using Newton‘s iterations and numerical integrations. This method solves well the subor super-critical flows, and with a transonic fix, also handles well the transonic flows over the concentration. Numerical examples provide strong evidence on the effectiveness of this new method for both unsteady and steady state calculations.  相似文献   

13.
We consider a two-fluid model of two-phase compressible flows. First, we derive several forms of the model and of the equations of state. The governing equations in all the forms contain source terms representing the exchanges of momentum and energy between the two phases. These source terms cause unstability for standard numerical schemes. Using the above forms of equations of state, we construct a stable numerical approximation for this two-fluid model. That only the source terms cause the oscillations suggests us to minimize the effects of source terms by reducing their amount. By an algebraic operator, we transform the system to a new one which contains only one source term. Then, we discretize the source term by making use of stationary solutions. We also present many numerical tests to show that while standard numerical schemes give oscillations, our scheme is stable and numerically convergent.  相似文献   

14.
The hyperbolic Eularian model is used as a mathematical framework for compressible multiphase flows. The formulation was obtained after an averaging process of the single phase Navier-Stokes equations. The closure of multi-component system leads to the volume fraction equation containing a non-conservative term and a pressure equilibrium condition. As a result the model equations cannot be written in a conservative form. To solve the equations a finite volume Godunov type computational approach is developed which uses an approximate Riemann solver combined with a numerical scheme to tackle the non-conservative terms. The approach accounts for pressure non-equilibrium. It enables resolving interfaces separating compressible fluids and captures the baroclinic source of vorticity generation. The computations are performed for various initial conditions and compared with theoretical and experimental data for a shock-bubble interaction problem. The investigated cases include acoustic wave transmission through isolated bubbles of helium and krypton. The numerical results illustrate the characteristic features of the evolving interfaces. The impulsively generated flow perturbations are dominated by the reflection and refraction of the shock and by the vorticity generation within the media. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
16.
In this article we describe a numerical method to solve a nonhomogeneous diffusion equation with arbitrary geometry by combining the method of fundamental solutions (MFS), the method of particular solutions (MPS), and the eigenfunction expansion method (EEM). This forms a meshless numerical scheme of the MFS‐MPS‐EEM model to solve nonhomogeneous diffusion equations with time‐independent source terms and boundary conditions for any time and any shape. Nonhomogeneous diffusion equation with complex domain can be separated into a Poisson equation and a homogeneous diffusion equation using this model. The Poisson equation is solved by the MFS‐MPS model, in which the compactly supported radial basis functions are adopted for the MPS. On the other hand, utilizing the EEM the diffusion equation is first translated to a Helmholtz equation, which is then solved by the MFS together with the technique of the singular value decomposition (SVD). Since the present meshless method does not need mesh generation, nodal connectivity, or numerical integration, the computational effort and memory storage required are minimal as compared with other numerical schemes. Test results for two 2D diffusion problems show good comparability with the analytical solutions. The proposed algorithm is then extended to solve a problem with irregular domain and the results compare very well with solutions of a finite element scheme. Therefore, the present scheme has been proved to be very promising as a meshfree numerical method to solve nonhomogeneous diffusion equations with time‐independent source terms of any time frame, and for any arbitrary geometry. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

17.
A second-order accurate numerical scheme is developed to solve Nwogu’s extended Boussinesq equations. A staggered-grid system is introduced with the first-order spatial derivatives being discretized by the fourth-order accurate finite-difference scheme. For the time derivatives, the fourth-order accurate Adams predictor–corrector method is used. The numerical method is validated against available analytical solutions, other numerical results of Navier–Stokes equations, and experimental data for both 1D and 2D nonlinear wave transformation problems. It is shown that the new algorithm has very good conservative characteristics for mass calculation. As a result, the model can provide accurate and stable results for long-term simulation. The model has proven to be a useful modeling tool for a wide range of water wave problems.  相似文献   

18.
We propose a new well-balanced central finite volume scheme for the Ripa system both in one and two space dimensions. The Ripa system is a nonhomogeneous hyperbolic system with a non-zero source term that is obtained from the shallow water equations system by incorporating horizontal temperature gradients. The proposed numerical scheme is a second-order accurate finite volume method that evolves a non-oscillatory numerical solution on a single grid, avoids the process of solving Riemann problems arising at the cell interfaces, and follows a well-balanced discretization that ensures the steady state requirement by discretizing the geometrical source term according to the discretization of the flux terms. Furthermore the proposed scheme mimics the surface gradient method and discretizes the water height according to the discretization of the water level. The proposed scheme is then applied and classical one and two-dimensional Ripa problems with flat or variable bottom topographies are successfully solved. The obtained numerical results are in good agreement with corresponding ones appearing in the recent literature, thus confirming the potential and efficiency of the proposed method.  相似文献   

19.
Time-dependent problems modeled by hyperbolic partial differential equations can be reformulated in terms of boundary integral equations and solved via the boundary element method. In this context, the analysis of damping phenomena that occur in many physics and engineering problems is a novelty. Starting from a recently developed energetic space-time weak formulation for the coupling of boundary integral equations and hyperbolic partial differential equations related to wave propagation problems, we consider here an extension for the damped wave equation in layered media. A coupling algorithm is presented, which allows a flexible use of finite element method and boundary element method as local discretization techniques. Stability and convergence, proved by energy arguments, are crucial in guaranteeing accurate solutions for simulations on large time intervals. Several numerical benchmarks, whose numerical results confirm theoretical ones, are illustrated and discussed.  相似文献   

20.
This article presents a time-accurate numerical method using high-order accurate compact finite difference scheme for the incompressible Navier-Stokes equations. The method relies on the artificial compressibility formulation, which endows the governing equations a hyperbolic-parabolic nature. The convective terms are discretized with a third-order upwind compact scheme based on flux-difference splitting, and the viscous terms are approximated with a fourth-order central compact scheme. Dual-time stepping is implemented for time-accurate calculation in conjunction with Beam-Warming approximate factorization scheme. The present compact scheme is compared with an established non-compact scheme via analysis in a model equation and numerical tests in four benchmark flow problems. Comparisons demonstrate that the present third-order upwind compact scheme is more accurate than the non-compact scheme while having the same computational cost as the latter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号