首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the living cationic polymerization of isobutyl vinyl ether (IBVE) by the CH3CH (OiBu) OCOCH3 ( 1 )/EtAlCl2 initiating system in the presence of the added base in hexane at +40°C, the stability of the initiating system 1 /EtAlCl2, which form initiating species CH3CH (OiBu) derived from 1 , was investigated. In the presence of the Lewis base such as ethyl acetate or 1,4-dioxane, the active species was stable for 300 min even at +40°C in the absence of IBVE, and the living polymers were quantitatively obtained by adding IBVE. However, the active species was partly consumed by side reactions during the standing time for 60 min in the presence of a less basic additive such as ethyl benzoate, and about 50% of the active species was deactivated in the presence of methyl chloroacetate. Consequently, in the case of a less basic additive such as methyl chloroacetate (which was effective for the fast living polymerization), it can be seen that the careful selection of polymerization conditions was required. The living polymerization rate was dependent on the second order of EtAlCl2 concentration. EtAlCl2 induced the cleavage of 1 into CH3CH (OiBu) and EtAl?Cl2(OCOCH3), and the reactivity of CH3CH (OiBu) and propagating carbocation may be controlled by EtAl?Cl2(OCOCH3) with the aid of other EtAlCl2. Et1.5AlCl1.5 exists as a bimetallic complex of EtAlCl2 and Et2AlCl, and it is expected that the polymers having a bimodal molecular weight distribution will be obtained due to two kinds of counteranions coming from EtAlCl2 and Et2AlCl. However, in the cationic polymerization of IBVE by 1 /Et1.5AlCl1.5 in the presence of ethyl acetate, the living polymer exhibiting a unimodal and very narrow molecular weight distribution was obtained. Thereby, it was suggested that the counteranions, EtAl?Cl2(OCOCH3) and Et2Al?Cl(OCOCH3), exchange rapidly with each other. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
A series of bis(phenoxy‐imine) vanadium and zirconium complexes with different types of R3 substituents at the nitrogen atom, where R3 = phenyl, naphthyl, or anthryl, was synthesized and investigated in ethylene polymerization. Moreover, the catalytic performance was verified for three supported catalysts, which had been obtained by immobilization of bis[N‐(salicylidene)‐1‐naphthylaminato]M(IV) dichloride complexes (M = V, Zr, or Ti) on the magnesium carrier MgCl2(THF)2/Et2AlCl. Catalytic performance of both supported and homogeneous catalysts was verified in conjunction with methylaluminoxane (MAO) or with alkylaluminium compounds (EtnAlCl3?n, n = 1–3). The activity of FI vanadium and zirconium complexes was observed to decline for the growing size of R3, whereas the average molecular weight (MW) of the polymers was growing for larger substituent. Moreover, vanadium complexes exhibited the highest activity with EtAlCl2, whereas zirconium ones showed the best activity with MAO. All immobilized systems were most active in conjunction with MAO, and their activities were higher than those for their homogeneous counterparts, and they gave polymers with higher average MWs. That effect was in particular evident for the titanium catalyst. The vanadium complex 3 was also a good precursor for ethylene/1‐octene copolymerization; however, its immobilization reduced its potential for incorporation of a comonomer into a polyethylene chain. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Polymerization of acrylonitrile in the presence of systems that consisted of triphenylphosphine (PPh3) and a Lewis acid RmMXn (ZnCl2, Me3Al, Et3Al, Et2AlCl, EtAlCl2, AlCl3) was studied. The systems that contained Me3Al and Et3Al (i.e., Lewis acid of moderate acidity) were the most efficient catalysts. Conductometric measurements carried out in the polymerization systems showed the presence of ions. The presence of phosphonium cation in the polyacrylonitrile chain formed by the PPh3–RmMXn catalytic systems was determined by IR, 1H-NMR, and 31P-NMR spectroscopy. The average molecular weight measurements and kinetic chain lengths of polyacrylonitrile formed within the reaction time in the presence of PPh3–Et3Al showed that transfer reactions occur. According to the results obtained, the polymerization reaction of acrylonitrile by PPh3–RmMXn involved a zwitterion formed by the attack of PPh3 on acrylonitrile complexed by Lewis acid [Ph3P? CH2? C?H? C?N → MRmXn] and the anion [CH2?C?? C?N] formed by the proton abstraction from the monomer.  相似文献   

4.
The one-pot cyclopropanation of styrene using ClnAlEt3−n (Et2AlCl, EtAlCl2, AlCl3) and carboxylic esters in the presence of Cp2ZrCl2 as catalyst gives rise to alkoxycyclopropanes.  相似文献   

5.
The polymerization of 1-methoxy-1-ethynylcyclohexane (MEC) was carried out by various transition metal catalysts. The catalysts MoCl5, MoCl4, and WCl6 gave a relatively low yield of polymer (≤ 16%). The catalytic activity of Mo-based chloride catalyst was greater than that of W-based chloride catalyst. However, catalyst tungsten carbene complex (I) gave a larger molar mass and higher yield in the presence of a Lewis acid such as AlCl3 than in the absence of a Lewis acid. The activity of the tungsten carbene complex was obviously affected by Lewis acidity. The catalyst PdCl2 was a very effective catalyst for the present polymerization and gave polymers in a high yield. The structure of the resulting poly(MEC) was identified by various instrumental methods as a conjugated polyene structure having an α-methoxycyclohexyl substituent. The poly(MEC)s were mostly light-brown powders and completely soluble in various organic solvents such as tetrahydrofuran (THF), chloroform (CHCl3), ethylacetate, n-butylacetate, dimethylformamide, benzene, xylene, dimethylacetamide, 1,4-dioxane, pyridine, and 1-methyl-2-pyrrolidinone. Thermogravimetric analysis showed that the polymer started to lose mass at 125°C and that maximum decomposition occurred at 418°C. The x-ray diffraction diagram shows that poly(MEC) has an amorphous structure. © 1997 John Wiley & Sons, Inc.  相似文献   

6.
Living cationic polymerization of alkoxyethyl vinyl ether [CH2?CHOCH2CH2OR; R: CH3 (MOVE), C2H5 (EOVE)] and related vinyl ethers with oxyethylene units in the pendant was achieved by 1-(isobutoxy)ethyl acetate ( 1 )/Et1.5AlCl1.5 initiating system in the presence of an added base (ethyl acetate or THF) in toluene at 0°C. The polymers had a very narrow molecular weight distribution (M?w/M?n = 1.1–1.2) and the M?n proportionally increased with the progress of the polymerization reaction. On the other hand, the polymerization by 1 /EtAlCl2 initiating system in the presence of ethyl acetate, which produces living polymer of isobutyl vinyl ether, yielded the nonliving polymer. When an aqueous solution of the polymers thus obtained was heated, the phase separation phenomenon was clearly observed in each polymer at a definite critical temperature (Tps). For example, Tps was 70°C for poly(MOVE), and 20°C for poly(EOVE) (1 wt % aqueous solution, M?n ~ 2 × 104). The phase separation for each case was quite sensitive (ΔTps = 0.3–0.5°C) and reversible on heating and cooling. The Tps or ΔTps was clearly dependent not only on the structure of polymer side chains (oxyethylene chain length and ω-alkyl group), but also on the molecular weight (M?n = 5 × 103-7 × 104) and its distribution. © 1992 John Wiley & Sons, Inc.  相似文献   

7.
The living cationic polymerization of 4‐[2‐(vinyloxy)ethoxy]azobenzene (AzoVE) was achieved with various Lewis acids in the presence of an ester as an added base. When Et1.5AlCl1.5 was used as a catalyst, the living polymerization system was controllable by UV irradiation as a result of cis and trans isomerization of the azobenzene side groups. Furthermore, an initiating system consisting of SnCl4 and EtAlCl2 realized fast living polymerization of AzoVE. The polymerization rate of this system was 3 orders of magnitude faster than that obtained with Et1.5AlCl1.5. Poly(4‐[2‐(vinyloxy)ethoxy]azobenzene) was soluble in a diethyl ether/hexane mixture at 25 °C but became insoluble upon irradiation with UV light. This phase‐transition behavior was sensitive and reversible upon irradiation with UV or visible light and reflected the change in polarity occurring with cis and trans isomerization of the azobenzene side groups in the polymers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5138–5146, 2005  相似文献   

8.
Vanadium complexes with tetradentate salen‐type ligands were first time explored in ethylene polymerizations. The effects of the vanadium complex structure, the alkyl aluminum cocatalysts type (EtAlCl2, Et2AlCl, Et3Al, and MAO), and the polymerization conditions (Al/V molar ratio, temperature) on polyethylene yield were explored. It was found that EtAlCl2 in conjunction with investigated vanadium complexes produced the most efficient catalytic systems. It was shown, moreover, that the structural changes of the tetradentate salen ligand (type of bridge which bond donor nitrogen atoms and type of substituent on aryl rings) affected activity of the catalytic system. The complexes containing ligands with cyclohexylene bridges were more active than those with ethylene bridges. Furthermore, the presence of electron‐withdrawing groups at the para position and electron‐donating substituents at the ortho position on the aryl rings of the ligands resulted in improved activity in relation to the systems with no substituents (with the exception of bulky t‐Bu group). The results presented also revealed that all vanadium complexes activated by common organoaluminum compounds gave linear polyethylenes with high melting points (134.8–137.6 °C), high molecular weights, and broad molecular weight distribution. The polymer produced in the presence of MAO possesses clearly lower melting point (131.4 °C) and some side groups (around 9/1000 C). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6940–6949, 2008  相似文献   

9.
Carbon black-supported sulfuric acid or BF3·Et2O-initiated polymerizations of 2-methylene-4,4,5,5-tetramethyl-1,3-dioxolane (1), 2-methylene-4-phenyl-1,3-dioxolane (2), and 2-methylene-4-isopropyl-5,5-dimethyl-1,3-dioxane (3) were performed. 1,2-Vinyl addition homopolymers of 1–3 were produced using carbon black-supported H2SO4 initiation at temperatures from 0°C to 60°C whereas both ring-opened and 1,2-vinyl structural units were present in the polymers using BF3·Et2O as an initiator. Cationic polymerizations of 2-methylene-1,3-dithiolane (4) and copolymerization of 4 with 2-methylene-4-(t-butyl)-1,3-dioxolane (5) were initiated with either carbon black-sulfuric acid or BF3·Et2O. Insoluble 1,2-vinyl addition homopolymers of 4 were obtained upon initiation with the supported acid or BF3·Et2O. A soluble copolymer of 2-methylene-1,3-dithiolane (4) and 4-(t-butyl)-2-methylene-1,3-dioxolane (5) was obtained upon BF3·Et2O initiation. This copolymer is composed of three structural units: a ring-opened dithioester unit, a 1,2-vinyl-polymerized 1,3-dithiolane unit, and a 1,2-vinyl polymerized 4-(t-butyl)-1,3-dioxolane unit. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2823–2840, 1999  相似文献   

10.
Various types of fluorine‐containing star‐shaped poly(vinyl ether)s were successfully synthesized by crosslinking reactions of living polymers based on living cationic polymerization. Star polymers with fluorinated arm chains were prepared by the reaction between a divinyl ether and living poly(vinyl ether)s with fluorine groups (C4F9, C6F13, and C8F17) at the side chain using cationogen/Et1.5AlCl1.5 in a fluorinated solvent (dichloropentafluoropropanes), giving star‐shaped fluorinated polymers in high yields with a relatively narrow molecular weight distribution. The concentration of living polymers for the crosslinking reaction and the molar feed ratio of a bifunctional vinyl ether to living polymers affected the yield and molecular weight of the star polymers. Star polymers with block arms were prepared by a linking reaction of living block copolymers of a fluorinated segment and a nonfluorinated segment. Heteroarm star‐shaped polymers containing two‐ or three‐arm species were synthesized using a mixture of different living polymer species for the reaction with a bifunctional vinyl ether. The obtained polymers underwent temperature‐induced solubility transitions in various organic solvents, and their concentrated solutions underwent sol–gel transitions, based on the solubility transition of a thermoresponsive fluorinated segment. Furthermore, a slight amount of fluorine groups were shown to be effective for physical gelation when those were located at the arm ends of a star polymer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
One-pot Diels-Alder reactions of cyclopentadiene with 3-crotonoyl- ( 2 ) and 3-acryloyl-4,4-dimethyl-1,3-oxazolidin-2-one ( 3 ), Mediated by chiral Lewis acids, are described. AlCl3, EtAlCl2, Et2AlCl, TiCl4, ZrCl4, SnCl4, SiCl4, and BBr3, modified with derivatives of D -mannitol, L -tartaric acid, and (R)-binaphthol, were applied as chiral promotors. The reaction with dienophile 2 , carried out in CH2Cl2 at ?78° with high yield, was characterized by excellent π-face selectivity. In case of the reaction with dienophile 3 , the efficiency of the chirality transfer was much lower.  相似文献   

12.
The living cationic polymerization of 5‐ethyl‐2‐methyl‐5‐(vinyloxymethyl)‐1,3‐dioxane ( 1 ), a vinyl ether with a cyclic acetal unit, was investigated with various initiating systems in toluene or methylene chloride at 0 to ?30 °C. With initiating systems such as hydrogen chloride (HCl)/zinc chloride (ZnCl2), isobutyl vinyl ether–acetic acid adduct [CH3CH(OiBu)OCOCH3]/tin tetrabromide (SnBr4)/di‐tert‐butylpyridine (DTBP), and CH3CH(OiBu)OCOCH3/ethylaluminum sesquichloride (Et1.5AlCl1.5)/ethyl acetate (CH3COOEt), the number‐average molecular weights (Mn's) of the obtained poly( 1 )s increased in direct proportion to the monomer conversion and produced polymers with relatively narrow molecular weight distributions [MWDs; weight‐average molecular weight/number‐average molecular weight (Mw/Mn) = 1.2–1.3]. To investigate the living nature of the polymerization with CH3CH(OiBu)OCOCH3/SnBr4/DTBP, a second monomer feed was added to the almost polymerized reaction mixture. The added monomer was completely consumed, and the Mn values of the polymers showed a direct increase against the conversion of the added monomer, indicating the formation of a long‐lived propagating species. The glass transition temperature and thermal decomposition temperature of poly( 1 ) (e.g., Mn = 13,600, Mw/Mn = 1.30) were 29 and 308 °C, respectively. The cyclic acetal group in the pendants of the polymer of 1 could be converted to the corresponding two hydroxy groups in a 65% yield by an acid‐catalyzed hydrolysis reaction. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4855–4866, 2007  相似文献   

13.
The cationic polymerization of isobutylene using 2‐phenyl‐2‐propanol (CumOH)/AlCl3OBu2 and H2O/AlCl3OBu2 initiating systems in nonpolar solvents (toluene, n‐hexane) at elevated temperatures (?20 to 30 °C) is reported. With CumOH/AlCl3OBu2 initiating system, the reaction proceeded by controlled initiation via CumOH, followed by β‐H abstraction and then irreversible termination, thus, affording polymers (Mn = 1000–2000 g mol?1) with high content of vinylidene end groups (85–91%), although the monomer conversion was low (≤35%) and polymers exhibited relatively broad molecular weight distribution (MWD; Mw/Mn = 2.3–3.5). H2O/AlCl3OBu2 initiating system induced chain‐transfer dominated cationic polymerization of isobutylene via a selective β‐H abstraction by free base (Bu2O). Under these conditions, polymers with very high content of desired exo‐olefin terminal groups (89–94%) in high yield (>85%) were obtained in 10 min. It was shown that the molecular weight of polyisobutylenes obtained with H2O/AlCl3OBu2 initiating system could be easily controlled in a range 1000–10,000 g mol?1 by changing the reaction temperature from ?40 to 30 °C. The MWD was rather broad (Mw/Mn = 2.5–3.5) at low reaction temperatures (from ?40 to 10 °C), but became narrower (Mw/Mn ≤ 2.1) at temperatures higher than 10 °C. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Living cationic polymerization of fluorine‐containing vinyl ethers [CH2?CH? O? C2H4? O? C3H6? CnF2n+1: 5FVE (n = 2), 13FVE (n = 6)] was investigated in various solvents with a CH3CH(OiBu)OCOCH3/Et1.5AlCl1.5 initiating system in the presence of an added base. 5FVE was polymerized quantitatively in toluene at 0 °C, and the obtained polymers had predetermined molecular weights with narrow molecular weight distributions (Mw/Mn < 1.1). On the other hand, for the polymerization of 13FVE, the product polymers precipitated due to their extremely poor solubility in nonfluorinated organic solvents. Therefore, fluorinated solvents such as hydrochlorofluorocarbons, hydrofluorocarbons, hydrofluoroethers, or α,α,α‐trifluorotoluene, as‐yet uninvestigated for cationic polymerization, were employed. In these solvents, living polymerization was achieved even with 13FVE, yielding well‐defined polymers (Mw/Mn < 1.1, by size exclusion chromatography using a fluorinated solvent as an eluent). The solvents were also shown to be good for living polymerization of isobutyl vinyl ether. The obtained fluorine‐containing polymers underwent temperature‐responsive solubility transitions in organic solvents. Poly(5FVE) showed sensitive upper critical solution temperature (UCST)‐type phase separation behavior in toluene. Copolymers of 13FVE and isobutyl vinyl ether showed UCST‐type phase separation in common organic solvents with different polarities depending on their composition, while a homopolymer of 13FVE was insoluble in all nonfluorinated organic solvents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
Poly[tris(diorganophosphinato)alanes], [Al(OPRR′O)3]n, were synthesized in which the organic moieties (R,R′) contained from one to eighteen carbon atoms. Polymeric properties depended upon the organic moieties; polymers were fusible, tractable, and flexible when the organic moieties contained six or more carbon atoms. Soluble polymers were prepared by using mixtures of symmetrical and unsymmetrical phosphinates. One polymer, poly{bis[n-butyl(benzyl)phosphinato]di-n-octylphosphinatoalane}, exhibited a degree of polymerization greater than 1000 and an exceptionally high intrinsic viscosity of 37 dl/g. The properties of the different polymers are discussed, and feasible structures are proposed.  相似文献   

16.
The distribution of nickel in the reaction products from the reactions of nickel(II) stearate with diethylaluminum chloride (Et2AlCl), ethylaluminum sesquichloride (Et3Al2Cl3), and ethylaluminum dichloride (EtAlCl2) in benzene was investigated as a function of the Al/Ni reaction stoichiometry. The products consist of benzene-soluble nickel complexes and a precipitate from which can be extracted NiCl2 and metallic nickel. The percentage of each product is seen to be dependent upon the Al/Ni reaction ratio and the aluminum compound employed in the reaction. It was found that in each case six alkylaluminums are required for complete reaction with one nickel(II) stearate molecule. The compunds Et2AlCl, Et3Al2Cl3, and EtAlCl2 were all found to have greater reducing ability than Et3Al at room temperature. Alternative interpretations of the chloro compounds' greater reducing abilities are discussed.  相似文献   

17.
Ethylenebis(5‐chlorosalicylideneiminato)vanadium dichloride supported on MgCl2(THF)2 or on the same carrier modified by EtnAlCl3?n, where n = 1–3, was used in ethylene polymerization in the presence of MAO or a common alkylaluminium compounds as a cocatalyst. The support type alter vanadium loading and also change the characteristic of the catalytic active sites. Et2AlCl is the best activator for a catalyst which has been immobilized on a nonmodified support, whereas the systems which contain a carrier which has been modified by an organoaluminium compound reveal the highest activity in conjunction with MAO. That difference, together with different temperature effects on polymerization efficiency (i.e., decrease and increase of catalytic activity for increasing temperatures, respectively) suggest the formation of different types of active sites in the catalytic systems supported on modified and nonmodified magnesium carrier. However, all supported precatalysts possess a long lifetime, still being active towards ethylene polymerization after 2 h. All the systems yield wide MWD polyethylene, while bimodal MWD is found for some part of analyzed samples. Polyethylene with bimodal particle size distribution is formed with the system which contain modified carriers at higher temperatures. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3480–3489, 2009  相似文献   

18.
The anionic polymerization of methyl methacrylate in toluene at −78 °C with lithium amides of various secondary amines (diisopropylamine, N‐isopropylaniline, Nn‐butylaniline, indoline, and N‐ethyl‐o‐toluidine) as initiators was studied. The tacticity of the resulting poly(methyl methacrylate)s (PMMAs) was dependent on the kind of secondary amine, and highly isotactic PMMAs (91–93% mm) were obtained when lithium amides of N‐isopropylaniline and Nn‐butylaniline were employed. The isotacticity of the PMMAs further increased up to 98% mm with initiating systems composed of the lithium amides, n‐butyllithium, and transition‐metal halides (WCl6, MoCl5, and NbCl5). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4405–4411, 2005  相似文献   

19.
The effect of the catalytic amount of H2O was investigated with the EtnAlCl3-n-VOCl3 catalyst system on the alternating copolymerization of acrylic monomers with diolefins and styrene. The presence of the catalytic amount of H2O produced an improvement in the yield and in the molecular weight as well as the structure of copolymer with the EtnAlCl3-n-VOCl3 catalyst system. The efficiency of the aluminum components in the EtnAlCl3-n-VOCl3 system appears with AlEt3 and especially with Et1.5AlCl1.5. The catalytic activity was found to depend upon the H2O EtnAlCl3-n molar ratio and was also affected by the order of mixing of the catalyst components and the monomers. Effective catalyst could be prepared when the catalyst components (except VOCl3) were premixed without presence of monomers. The possible catalytic behavior of H2O was discussed.  相似文献   

20.
The Friedel-Crafts acylation of N-p-toluenesulfonylpyrrole under Friedel-Crafts conditions has been reinvestigated. Evidence is presented in support of the hypothesis that when AlCl3 is used as the Lewis acid, acylation proceeds via reaction of an organoaluminum intermediate with the acyl halide. This leads to the production of the 3-acyl derivative as the major product. With weaker Lewis acids (EtAlCl2, Et2AlCl) or less than 1 equiv of AlCl3 the relative amount of 2-acyl product is increased. A mechanistic rationalization is presented to explain these data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号