首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Research into the electrical‐thermal aging properties of cross‐linked polyethylene (XLPE) cable has great significance, because of its wide application. This study conducted accelerated electrical‐thermal aging tests on 10‐kV XLPE cable in order to assess the cable's mechanical and dielectric properties. After being aged by applying 34.8‐kV AC voltage at the four temperatures of 90, 103, 114, and 135°C, the cable samples were taken out in five stages according to the aging time and cut into slices. The slices were conducted experiments to test the breaking elongation, tensile strength, gel content, breakdown voltage, and frequency spectrums of the dielectric constant and dielectric loss. The results demonstrate that the mechanical strength and gel content of XLPE vary greatly under different aging temperatures, a finding that is associated with the crystallization characteristics of the material. The breakdown voltage shows a slight decreasing trend with aging time. The dielectric constant decreases with aging time in high‐frequency areas (103–106 Hz), while the dielectric loss factor increases with aging time at low frequencies (10?2–0 Hz). These two parameters can be used to characterize the degree of aging in cable. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
The power cable insulation is in permanence subjected to thermal aging during its operating service. Thermal aging may influence not only the electrical, physicochemical and other properties of the XLPE cable insulation, but also the initiation and propagation of water tree inside it. Our research on the influence of thermal degradation to the water treeing behavior of XLPE cable insulation shows that thermal oxidation is the most influential to the initiation and growth of water treeing from the surface of XLPE cable insulation among all the probable factors caused during thermal aging.  相似文献   

3.
This study concerns the effect of thermal aging on mechanical properties of polyurethane. Polyurethane samples were exposed at 85° and 120°C under inert atmosphere. Mechanical tests were carried out on these samples the aging period. Tensile tests were performed to see the effect of aging on elastic modulus (E), stress (σr), and strain (?r) at break. It was shown that there are two distinct periods. Due to aging, E and σr increase in the first period, then they decrease in the second period. ?r decreases first and then increases. Fatigue tests were performed on unaged and aged samples. It was shown that the fatigue behavior of polyurethane (PU) is improved the same way during the first stage of aging. In the second step, the number of cycles to failure increases due to aging. The results show that aging has an important effect on mechanical properties of PU. The strain at break decreases during the first step of aging due to post-cross-linking and then increases due to chain scission in the network. Based on these results, the effect of cross-linking and chain scission on the mechanical properties of PU was discussed.  相似文献   

4.
Thermal and combined thermal and radiation aging of low voltage EPR and XLPE cable insulation with Agerite MA antioxidant and with the ZMTI/Aminox antioxidant system was examined to compare the relative effectiveness of the antioxidant and polymer systems. All provided significant stability with no clear choice of any particular combination being superior to the others. A comparison of degradation from thermal and radiation aging with degradation from combined thermal/radiation aging showed that the damage from the individual aging effects was superposable. This indicates that synergistic effects have little importance for the EPRs and XLPEs tested under the aging conditions observed.  相似文献   

5.
The effects of film thickness, physical aging, and methanol conditioning on the solubility and transport properties of glassy poly[1‐phenyl‐2‐[p‐(triisopropylsilyl) phenyl]acetylene] are reported at 35 °C. In general, the gas permeability coefficients are very high, and this polymer is more permeable to larger hydrocarbons (e.g., C3H8 and C4H10) than to light gases such as H2. The gas permeability and solubility coefficients are higher in as‐cast, unaged films than in as‐cast films aged at ambient conditions and increase to a maximum in both unaged and aged as‐cast films after methanol conditioning. For example, the oxygen permeability of a 20‐μm‐thick as‐cast film is initially 100 barrer and decreases to 40 barrer after aging for 1 week at ambient conditions. After methanol treatment, the oxygen permeabilities of unaged and aged films increase to 430 and 460 barrer, respectively. Thicker as‐cast films have higher gas permeabilities than thinner as‐cast films. Propane and n‐butane sorption isotherms suggest significant changes in the nonequilibrium excess free volume in these glassy polymer films due to processing history. For example, the nonequilibrium excess free volume estimated from the sorption data is similar for as‐cast, unaged samples and methanol‐conditioned samples; it is 100% higher in methanol‐conditioned films than in aged, as‐cast films. The sensitivity of permeability to processing history may be due in large measure to the influence of processing history on nonequilibrium excess free volume and free volume distribution. The propane and n‐butane diffusion coefficients are also sensitive to film processing history, presumably because of the dependence of diffusivity on free volume and free volume distribution. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1474–1484, 2000  相似文献   

6.
The current work utilizes three separate techniques to study the physical aging process in amorphous poly(ethylene furanoate) (PEF), which is a recently introduced engineering thermoplastic with enhanced properties compared to petroleum‐sourced poly(ethylene terephthalate). Differential scanning calorimetry aging experiments were conducted at multiple aging temperatures and times, and the resultant enthalpic recovery values compared to the theoretical maximum enthalpy loss evaluated from calculations involving extrapolation of the equilibrium liquid line. Density measurements reveal densification of the matrix for the aged versus unaged samples, and provide an estimate for the reduction in free volume for the aged samples. Complementary oxygen permeation and pressure‐decay sorption experiments provide independent verification of the free volume reduction mechanism for physical aging in glassy polymers. The current work provides the first detailed aging study for PEF. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 389–399  相似文献   

7.
Cross-linked polyethylene (XLPE) films have been coated with nanostructured hybrid organic-inorganic coatings in order to improve their durability. For this purpose, bi- and mono-layer coatings containing different amount of silica and different organic polymers have been prepared through sol-gel reactions and applied to XLPE commercial films. The thermo-oxidative stability, electrical strength and conductivity of XLPE coated films have been investigated after ageing in air at temperatures above the on-service conditions, i.e. at 105 and 120 °C for 1900 and 600 h, respectively. The performed investigations (FT-IR, DSC, TGA and electrical properties) showed that all the coatings tested were able to strongly protect XLPE against oxidation, and that the coating with a PVOH/SiO2 layer gave the best protection. The increase of thermal resistance induced by the coatings reflects on the electrical strength after ageing, which is higher for coated samples than for uncoated ones. Moreover, while ageing has only a slight effect on electrical conductivity in different coated samples, a strong increase of conductivity was observed after ageing for highly oxidated uncoated samples.  相似文献   

8.
The recent developments in the photoinitiated cross-linking of polyethlene and the significant breakthrough of itsindustrial application are reviewed, The enhanced photo-initiation system, the dynamics of photoinitiated crosslinking, theoptimum conditions, the crystal morphological structures and related properties, and the photo- and thermo-oxidationstability of photocrosslinked polyethylene (XLPE) materials have been elucidated systematically. A new technique forproducing photocrosslinked XLPE-insulated wire and cable is described in detail. It can be expected that the fiture applications of photocrosslinking technique of polyolefins will be very promising.  相似文献   

9.
It has recently been demonstrated that hot-drawn samples of bisphenol A polycarbonate (PC) have a 50% higher volume relaxation rate than their isotropic counterpart even though the oriented samples have a lower initial free volume (i.e., higher density).1 In an attempt to better understand this paradox, samples of unaged, hot-drawn PC were characterized thermodynamically and kinetically as a function of orientation. Heat capacity, hole energy, and Tg data indicate that the chain mobility is actually decreasing slightly with orientation, possibly due to the hindered motion brought about by tighter packing, stronger intermolecular bonding, and reduced free volume. Nonetheless, this decrease in localized mobility is in contradiction to the enhanced volume relaxation rates observed for the oriented samples. In contrast, dynamic mechanical data indicate an increase in the relaxation strength of the β-transition (−100°C at 1 Hz) upon stretching for both the stretch and transverse directions. This implies that more segments are actively participating in the relaxation process for the oriented samples even though their individual localized mobility might be slightly lower. The net result is an increase in “effective” mobility for the oriented samples. It is conjectured that the enhanced relaxation strength of the oriented samples is a result of the stretching process somehow activating more of the chains into a higher energy state, and may be related to the physical aging concept of stress-induced rejuvenation/acceleration. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2111–2128, 1998  相似文献   

10.
A series of uniaxial ratcheting experiments on anisotropic conductive adhesive film (ACF) were conducted under stress-control at elevated temperature using a DMA-Q800. The ratcheting behavior of ACF specimens with different hygrothermal aging times was investigated at room temperature and 120 °C. The effects of loading rate, mean stress and stress amplitude on the ratcheting behavior of unaged and aged specimens were compared. The results show that the ratcheting strains of aged specimens are smaller than those of unaged specimens under the same experimental conditions. The cycling stability of aged specimens is increased by hygrothermal aging. At room temperature, with the increase of aging time, the ratcheting strains of aged specimens increase with hygrothermal aging time when it is less than or equal to 96 h but, however, decrease when it exceeds 96 h. At 120 °C the ratcheting strains of ACF only decrease with the increase of hygrothermal aging time. Additionally, the effects of loading rate, mean stress and stress amplitude on the ratcheting behavior of unaged and aged ACF are different and their effects are weakened by hygrothermal aging.  相似文献   

11.
《Thermochimica Acta》1987,114(1):115-124
A high quality pipe made of XLPE (Engel method) for industrial applications was used for the study of the material deterioration process upon accelerated aging. A sample aged at 110°C while submitted to an hydrostatic pressure of 0.53 MPa, giving a hoop stress of 2.66 MPa, was studied by means of Thermal Analysis, Density, and Gel Content measurements. The effects of aging are compared to a reference unexposed sample and the experimental results are discussed in terms of annealing effects, free volume and structural relaxation processes.  相似文献   

12.
Electron spin resonance (ESR) study is carried out to characterize thermal endurance of insulating materials used in power cable industry. The presented work provides ESR investigation and evaluation of widely used cable insulation materials, namely polyvinyl chloride (PVC) and cross-linked polyethylene (XLPE). The results confirm the fact that PVC is rapidly degrades than XLPE. The study also indicates that colorants and cable's manufacturing processes enhance the thermal resistance of the PVC. It also verifies the powerfulness and the importance of the ESR-testing of insulation materials compared to other tests assumed by International Electrotechnical Commission (IEC) Standard 216-procedure, e.g. weight loss (WL), electric strength (ES) or tensile strength (TS). The estimated thermal endurance parameters by ESR-method show that the other standard methods overestimate these parameters and produce less accurate thermal life time curves of cable insulation materials.  相似文献   

13.
The effect of crosslinking degree on accelerated water tree aging in crosslinked polyethylene (XLPE) was investigated. The peroxide-crosslinking process was adopted to make XLPE specimens with different degrees of crosslinking by controlling the doping content of dicumyl peroxide (DCP) in low-density polyethylene (LDPE). The water blade electrode method was applied to accelerate water-tree aging of LDPE and XLPE specimens (hereafter referred to as the specimens), and their morphologies were observed using an optical microscope. The variation of crystalline morphology and anti-cracking performance of the amorphous region in the specimens were analyzed by differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and an electronic universal testing machine. Based on the experimental results, it was found that XLPE has great anti-water-treeing performance compared to LDPE. In addition, the higher the crosslinking degree, the better the anti-water-treeing performance. Although crystal growth is inhibited due to the crosslinking reaction, the density of tie molecular chains greatly increases in the amorphous region and exhibits significantly tighter lamellar stacking, which is the reason that water tree growth is restrained with increasing crosslinking degree.  相似文献   

14.
The elucidation of the structural and morphological changes that occur during the crosslinking of polyethylene and the correlation of these changes with the physical, chemical and ageing resistance is very important to forecast the properties and the performance of the final material.The accelerated ageing of XLPE samples with various degrees of crosslinking has been carried out using two types of artificial weathering equipments, with UV or Xenon light bulbs with different cycles of temperature and humidity, varying time of exposition for both systems. The changes in the properties of the materials have been analyzed by Tensile Tests, Scanning Electron Microscopy (SEM), Dynamic-Mechanical Analysis (DMA), X-Ray Diffraction (XRD). The main degradation effects for each level of crosslinking is presented for the pristine XLPE.  相似文献   

15.
Cross-linked polyethylene (XLPE) is notable for its use as power cable insulation. Its longevity is limited by space charge buildup linked to impurities such as the byproducts left behind by the cross-linking agent dicumyl peroxide (DCP). The goal of this work is to determine the impacts of these byproducts on charge trapping and detrapping in XLPE using the thermally stimulated depolarization current technique. XLPE with byproducts has one source of trapped charge, which originates from the byproducts. XLPE that was thermally treated via degassing exhibits two other sources of trapped charge, which are charge injection and dipolar relaxations. Oxidation from degassing was shown to control the trapping from these sources, which is useful knowledge for processing this material prior to its use. Reintroducing acetophenone, one of the major byproducts of DCP, suppresses those two peaks once more, showing that it controls the overall space charge buildup characteristics in XLPE.  相似文献   

16.
Understanding the changes that take place in an aged Lithium-ion (Li-ion) battery cathode is vital to improving battery storage capabilities. High resolution imaging using an atomic force microscope (AFM) and current measurement capabilities are used to determine the difference in surface morphology as well as conductance between unaged and aged cathode. Upon aging, agglomeration of LiFePO(4) particles with nanocrystalline deposits is observed and the samples show lower conductance and hence increased resistance. The data identifies potential degradation mechanisms which reduce the conductivity of the cathode leading to poor cycling performance of the battery.  相似文献   

17.
This study focused on the fabrication of a composite of polylactic acid fibers reinforced with barium titanate (BT) and obtained by centrifugal spinning. Different concentrations of inorganic powder (5, 10, and 15 wt%) have been added to the polymeric solution and the samples have been studied to monitor any modification in chemical, morphological, thermal, and mechanical properties. Subsequently, samples have been subjected to UV/O3 irradiation at two different times (5 and 10 min) with the aim to verify the resistance to aging, which is considered a key factor for medical applications and outdoor. The presence of BT influenced strongly the structure of the fibers in many aspects. Samples with the lowest amount of BT showed a clear decrease of chemical and consequently of mechanical properties manifested with the breakage of the fibers subjected to treatment. The other composites apparently showed similar chemical properties comparing with the one without fillers but the mechanical properties clearly decreased. However, what emerged from the study is a clear stability during the aging tests promoted by the presence of BT. The samples with 10 and 15 wt% of BT presented chemical, thermal, and mechanical stabilities differently from the other samples. These results suggested that the fillers clearly modified the degree of crystallinity acting as nucleation agents and promoting the development of a stable crystalline phase during the treatment.  相似文献   

18.
In this work, we investigated the effects of an ethylene propylene diene monomer (EPDM) and poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) on the water tree resistance in cross-linked polyethylene (XLPE). The XLPE/EPDM and XLPE/SEBS blend samples were prepared by melting compounding and subsequent compression molding. It was found that SEBS could greatly increase the water tree resistance of XLPE and the resistance performance was improved with SEBS content within 15 phr, whereas EPDM did not show any improvement in the water tree resistance of XLPE. The frequency dependent behaviors of the water treeing phenomena and the effects of EVA on the water tree resistance of XLPE/EPDM and XLPE/SEBS blends were also investigated. The water treeing phenomena of the blends were interpreted from the viewpoints of electro-mechanical and electro-chemical mechanisms.  相似文献   

19.
FK888 (NK1 antagonist) is a candidate drug for migraine and selected as a model of amorphous drug. FK888 was micronized to develop as dry powder inhalers (DPIs) taking into consideration of its water insoluble property. The glass transition temperature (Tg) and fragility (m) were 90 degrees C and 118, respectively, and it was categorized as a fragile glass based on Angell's concept. FK888 was structurally relaxed by aging below Tg, then the effect of aging on their physical and aerosol properties were investigated. The investigation on the moisture sorption-desorption isotherms of FK888 indicated that aged FK888 adsorbed less amount of water than that of unaged FK888. This unique moisture sorption-desorption behavior of the aged sample is explained by structural relaxation accompanying decrease of free volume and/or increase of density. As for the dissolution rate of unaged and aged FK888, they showed the similar value, suggesting that there would be no difference in bioavailability. In relation to the stability, FK888 DPIs prepared by unaged and aged FK888 were stored at 70 degrees C, and the respirable fraction of FK888 DPIs was evaluated by using multistage cascade impactor (USP apparatus 3). As a result, the respirable fraction of FK888 DPIs prepared by unaged sample was significantly decreased compared to the aged sample, suggesting that agglomeration may occur in the unaged sample during the storage. This phenomenon was supported by that the unaged sample showed a significant decrease in the surface area compared to that of the aged sample when stored at various conditions.  相似文献   

20.
A study on the efficiency of bio-based compounds as stabilizers for polypropylene (PP) is reported. A water extract from French maritime pine bark (Pycnogenol®), a by-product containing polyphenols obtained from wine production, and a carotenoid-containing oleoresin from processing of tomatoes were used. Their stabilizing activity was compared with that of a commercial phenolic antioxidant. Thermogravimetric analysis and Oxidative Induction Time measurements performed on unaged samples, as well as infrared spectroscopy on samples aged at 70 °C, provided evidence for the effectiveness of the natural stabilizers. Mechanical characterization was carried out on aged films and injection moulded samples. Experimental results indicated that particularly grape extract could provide long-term stabilization to PP under conditions of oxidative degradation. Therefore, it could be used as efficient and high value-added additive for polypropylene. Pycnogenol® also showed antioxidant activity, however the achievement of a more homogeneous dispersion in the polymer matrix could improve the mechanical performance of aged samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号