首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electropolymerization of pyrrole in aqueous solution is monitored by electrochemical quartz crystal microbalance (EQCM) during potential scan. The film formation process on the electrode is reflected by the frequency decrease for the quartz oscillator as a function of time. The film growth rate is greatly enhanced in the presence of iron(III) meso-tetrakis(3-sulfonatomesityl)porphyrin, which carries 3- of charge. The metalloporphyrin is trapped and remains intact in the polypyrrole films. The ion transport property through the iron porphyrin/polypyrrole film is the reverse of that for pure polypyrrole. Electroreduction of dioxygen and electrooxidation of alkenes are parallel to those in the solution state.  相似文献   

2.
《Electroanalysis》2017,29(3):929-936
The electrochemically controlled ion‐exchange properties of multi‐wall carbon nanotube (MWNT)/electronically conductive polypyrrole (PPy) polymer composite in the various electrolyte solutions have been investigated. The ion‐exchange behavior, rate and capacity of the electrochemically deposited polypyrrole with and without carbon nanotube (CNT) were compared and characterized using cyclic voltammetry (CV), chronoamperometry (CA), electrochemical quartz crystal microbalance (EQCM), X‐ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It has been found that the presence of carbon nanotube backbone resulted in improvement in ion‐exchange rate, stability of polypyrrole, and higher anion loading capacity per PPy due to higher surface area, electronic conductivity, porous structure of thin film, and thinner film thickness providing shorter diffusion path. Chronoamperometric studies show that electrically switched anion exchange could be completed more than 10 times faster than pure PPy thin film. The anion selectivity of CNT/PPy film is demonstrated using X‐ray photoelectron spectroscopy (XPS).  相似文献   

3.
Cobalt complexes of the macrocyclic ligand, 2,3,9,10-tetramethyl-1,4, 8,11-tetraazacyclotetradeca-1,3,8,10-tetraene (TIM) and its hydroxy derivatives, were incorporated in Nafion films by electrochemical cycling and by ion exchange in aqueous solution. Cyclic voltammetric studies show that the redox potentials of the Co(TIM) complexes undergo a significant anodic shift when incorporated in the films. Electrochemical studies also indicate that, while the Co(TIM) complexes reside in hydrophilic regions of the Nafion film, the metallated porphine complex, cobalt tetrakis(pentafluorophenyl)porphine, is probably immobilized in hydrophobic regions. The incorporation of the complexes was also followed by electronic absorption spectrophotometry.  相似文献   

4.
In opposite with the usually applied synthesis in organic media, the polymerization of bithiophene in aqueous media has been studied. The use of a non-ionic surfactant (polyoxyethylene octyl phenyl ether (Triton X-100)) is useful not only to solubilize the hydrophobic monomer but it is also important to incorporate various—biologically and catalytically active—additives. In this paper, the optimization of the polymerization conditions as well as the characterization of the electrochemical, spectral and mass exchange behavior of these composite films is summarized. The layers have shown imperceptible electroactivity in monomer-free aqueous LiClO4 solutions, and electrochemical quartz crystal microbalance (EQCM) studies exhibited scarce ion movements, caused assumingly by the fact that the dopant species—moving together with their hydrate shell in the aqueous media—could not penetrate into the hydrophobic film. In contrast, nice reversible redox transformation could be obtained in organic medium such as acetonitrile, where—according to the EQCM results—the charge carrier formation/depletion is accompanied by the incorporation/removal of ClO4 ? anions. In this solution, the spectral changes have proved the transformation into the conducting state, connected to both mono- and di-cation forms. The incorporation of the surfactant has been demonstrated by the extraordinary surface morphology of the polybithiophene (pBT) films, characterized by scanning electron microscopy. The elementary composition of the curious shell-shaped objects, monitored by energy dispersive X-ray spectroscopy (EDX), evidenced the presence of Triton X-100 by the increased C/S ratio compared to neat polybithiophene, while the Cl/S data reflected the changes connected to the doping level as a consequence of ClO4 ? anion movements. Moreover, ex situ attenuated total reflectance (ATR) FT–IR measurements clearly showed the existence of C―O bonds, also proving the successful functionalization by the surfactant, built permanently into the redox active films.  相似文献   

5.
通过电沉积方法在镀铂石英晶片上制备了导电聚苯胺(PANI)膜,采用电化学石英晶体微天平(EQCM)技术探讨了苯胺聚合机制及在苯酚溶液中的氧化还原特性.在0.5 mol/L硫酸溶液中结合循环伏安法考察了PANI膜在完全还原态(L)-半氧化态(E)-完全氧化态(P)之间的电活性和稳定性;在不同浓度的苯酚溶液中结合恒电压阶跃...  相似文献   

6.
通过电沉积方法分别在镀铂石英晶片和铂基底上制备了电活性铁氰化镍膜,并考察了膜电极在含钇离子溶液中的电控离子交换性能. 在0.1 mol·L-1的硝酸钇溶液中,使用循环伏安法及石英晶体微天平技术测试考察了铁氰化镍膜对钇离子的置入释放性能及对应的质量变化,同时比较了铁氰化镍膜电极在Y(NO3)3和Sr(NO3)2溶液中的电化学性能. 在0.1 mol·L-1 [Y(NO3)3 + Sr(NO3)2]混合溶液中,通过循环伏安法分析了薄膜对Y3+/Sr2+离子的选择性. 用扫描电子显微镜观察了铁氰化镍膜的表面形貌,并通过X射线光电子能谱仪测定了膜在氧化和还原状态下的元素组成. 结果表明,铁氰化镍膜在含Y3+溶液中具有良好的离子交换行为,其中氧化过程薄膜质量减少,对应着钇离子的释放;还原过程薄膜质量增加,对应钇离子的置入;在0.0 V或0.9 V调控膜电极的氧化还原状态实现对钇离子的有效分离.  相似文献   

7.
Solid-phase microextraction (SPME) fiber coatings based on polypyrrole (PPY) films were prepared by electrochemical deposition of PPY films on platinum wires. To evaluate the effects of counter ions in PPY films on their performance in SPME, PPY films with different counter ions were prepared using different electrolytes during the polymerization processes. The results showed that these PPY films had different extraction properties to the compounds studied due to the different functional groups introduced into the films by the counter ions. Unlike the PPY films formed with small counter ions (such as perchlorate ion) that had anion exchange property, the PPY films having large counter ions such as poly(styrenesulfonate) (PSS) ion showed cation exchange property. Compared with the PPY films having small inorganic counter ions, the PPY films having large organic counter ions, such as dodecylsulphate (DS) ion, showed better extraction efficiency towards nonpolar compounds due to the increased hydrophobic interactions between the compounds and the films. In addition, PPY films formed with large aromatic counter ions had better mechanical stability compared with PPY films with small inorganic counter ions. These films could be applied for SPME of a range of analytes.  相似文献   

8.
The electropolymerization of trans-[RuCl(2)(vpy)(4)](vpy = 4-vinylpyridine) on Au or Pt electrodes was studied by cyclic voltammetry and the electrochemical quartz crystal microbalance (EQCM) technique. Cyclic voltammetry of the monomer in DMSO on Au shows reductions at -2.0 and -2.2 V. Potential cycling over the first wave leads to polymer formation; however, scanning over the second wave leads to desorption of the polymer. These observations were confirmed by EQCM measurements which also revealed a high polymerization efficiency. Electrolysis, EQCM and XPS measurements showed that desorption was associated with substitution of chloride ligands by DMSO when the polymer was in a highly reduced state. The film also showed reversible mass changes due to the oxidation and accompanying ingress of charge-balancing anions and solvent into the film. Measurements on the dried films revealed that large quantities of solvent are trapped in the film during the electropolymerization process.  相似文献   

9.
Porous sol–gel (PSG) film has been utilized as a template for the electrochemical polymerization of aniline in presence of poly(acrylic acid) (PAA). The presence of electroactive polyaniline (PAn)/PAA within the porous skeleton of the sol–gel films has been confirmed using cyclic voltammetry, UV–vis spectrometry and atomic force microscopic measurements. The densities and the sizes of the nanoelectrodes can be controlled easily using electrochemical methods. The conductive polymer “wires” of PAn/PAA formation in PSG matrix can behave as an ensemble of closely-spaced but isolated nanoelectrodes. Moreover, the nanoelectrode ensembles based on conductive PAn/PAA for glucose biosensing are fabricated by immobilization of glucose oxidase (GOx) and Nafion onto the surface of conductive polymer. Owing to the biocompatibility of PSG and electro-activity of PAn/PAA at neutral pH regions, the glucose biosensor shows excellent characteristics and performance, such as low detection limit and fast response time.  相似文献   

10.
We describe herein the electrochemical characterization and polymerization of 4-pyren-1-yl-butyric acid 11-pyrrol-1-yl-decyl ester (pyrrole–pyrene) in CH3CN. The electrochemical oxidation of the pyrrole group at 0.77 V vs Ag/Ag + 10 mM in CH3CN led to the first example of a fluorescent polypyrrole film. The mechanism of deposition on platinum electrode was studied by voltammetry and chronoamperometry. The optical properties of the polymeric films electrogenerated on ITO electrodes were examined by UV–visible spectroscopy and fluorescence microscopy indicating an increase in fluorescence properties by increased polymer thickness. The electrochemical oxidation of pyrenyl group linked to the polypyrrole backbone was carried out at 1.2 V. This additional polymerization was demonstrated by UV–visible spectroscopy and induced the loss of the fluorescence properties of the resulting polymeric film.  相似文献   

11.
A Ta solid electrolytic capacitor using conducting polypyrrole as a counter electrode has been developed by means of the direct film formation of electrochemical and chemical polymerization methods. Two-step electrochemical polymerization at a rapid and gentle rate yields a polypyrrole film on the dielectric surface of the capacitor. On the other hand, the homogeneous mixture dissolving pyrrole and oxidant under −70 °C allows chemical polymerization at elevated temperature, which also produces polypyrrole film on the dielectric surface. The capacitors produced by these methods demonstrate the improved characteristics, i.e., a high capacitance, low inner resistance and small leakage current, that correspond to the high-speed electronic devices.  相似文献   

12.
The electropolymerization of trans-[RuCl2(vpy)4] (vpy=4-vinylpyridine) on Au or Pt electrodes was studied by cyclic voltammetry, electrochemical quartz crystal microbalance (EQCM) technique, and Raman spectroscopy. Cyclic voltammetry of the monomer at a microelectrode shows the typical Ru(III/II) and Ru(IV/III) waves, together with the vinyl reduction waves at −1.5 and −2.45 V and adsorption wave at −0.8 V. Electrodeposition on EQCM technique performed under potential cycling between −0.9 and −2.0 V revealed that the polymerization proceeded well in advance of the vinyl reduction waves. At potentials more positive than −0.9 V, soluble oligomers were deposited irreversibly on the electrode during the oxidative sweep. The film also showed reversible mass changes due to the oxidation and accompanying ingress of charge-balancing anions and solvent into the film. In contrast, potentiostatic growth of the polymer at −1.6 V was slower because the oligomeric material was lost completely from the electrode. Unreacted vinyl groups were detected by in situ Raman spectroscopy for films grown at −0.7, −0.9, and −1.6 V but were absent when the polymerization was carried out at −2.9 V vs Ag/Ag+.  相似文献   

13.
Wetting and absorption of water drops on Nafion films   总被引:1,自引:0,他引:1  
Water drops on Nafion films caused the surface to switch from being hydrophobic to being hydrophilic. Contact angle hysteresis of >70 degrees between advancing and receding values were obtained by the Wilhelmy plate technique. Sessile drop measurements were consistent with the advancing contact angle; the sessile drop contact angle was 108 degrees . Water drop adhesion, as measured by the detachment angle on an inclined plane, showed much stronger water adhesion on Nafion than Teflon. Sessile water and methanol drops caused dry Nafion films to deflect. The flexure went through a maximum with time. Flexure increased with contact area of the drop, but was insensitive to the film thickness. Methanol drops spread more on Nafion and caused larger film flexure than water. The results suggest that the Nafion surface was initially hydrophobic but water and methanol drops caused hydrophilic sulfonic acid domains to be drawn to the Nafion surface. Local swelling of the film beneath the water drop caused the film to buckle. The maximum flexure is suggested to result from motion of a water swelling front through the Nafion film.  相似文献   

14.
Catalytic layers of platinum-ruthenium of preliminarily specified compositions are manufactured with the aid of ion exchange and subsequent chemical and electrochemical reduction in polymeric Nafion films applied onto carbonaceous materials and inside a standard Nafion 117 membrane. The procedure used for conducting the ion-exchange procedure ensures a high process rate and a short time required to conduct it, which makes it possible to obtain large roughness factors at relatively small contents of platinum metals (0.1–0.2 mg cm?2). The electrochemical activity of catalyzed membrane samples for methanol oxidation in aqueous and sulfuric acid solutions is close to the activity of standard E-TEK platinum-ruthenium catalysts.  相似文献   

15.
In the present investigation, we have synthesized a polypyrrole films by chemical polymerization technique for the development of ammonia sensor. The polypyrrole films were synthesized in an aqueous acidic medium on glass substrate with mild oxidation of ferric chloride at temperature 29°C. The concentrations (molar) of monomer (pyrrole), oxidant (ferric chloride), and dopant (polyvinyl sulfonate) have been optimized for the uniform and porous surface morphology of the synthesized polypyrrole film. The synthesized films were characterized by scanning electron microscopy, ultraviolet‐visible, and Fourier transforms infrared spectroscopy. Ammonia gas sensing behavior of polypyrrole films was studied by using indigenously developed gas sensing chamber. The synthesized polypyrrole film with optimized process parameters shows excellent and reproducible response to low concentration (100 ppm) of ammonia gas. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Nafion?–polyaniline (PAn) composite films deposited by a two-step process on a stainless steel (SS) substrate were characterized in this study using Fourier transform infrared (FTIR) spectroscopy under various conditions employed to evaluate their anticorrosion properties. The SS|Nafion? electrode was first prepared by placing a certain amount of Nafion? on the SS substrate, and then polymerization of aniline was carried out potentiodynamically on the SS|Nafion? electrode. The SS|Nafion?–PAn electrodes subjected to both potentiodynamic polarization and open-circuit conditions in sulfuric acid solutions without and with chlorides appeared to have distinct differences in their FTIR spectra. It is proposed that under the electrochemical conditions used in this study, the PAn is mostly formed inside the Nafion? membrane with a high proportion of oligomers influencing the ionic transport through the membrane. The inhibition of pitting corrosion arises primarily from the enhanced permselectivity of the composite film due to the Nafion? membrane that prevents chloride transport. An essential beneficial effect comes also from the PAn redox properties on the growth of the passive oxide film. Even under severe corrosion conditions, Nafion???/em>PAn films retain their redox activity and chemical stability, whereas the membrane crystallinity seems to be enhanced.  相似文献   

17.
The effect of thickness, an alkyl substituent in the ortho position and the chemical nature of the counterion on the absorption spectra of polyaniline films was studied. Previous work performed using the electrochemical quartz crystal microbalance technique (EQCM) has shown a greater participation of anions in the ionic exchange process when the thickness of the film is increased. This fact was attributed to morphological changes leading to different densities of the polymer film, which was demonstrated by SEM experiments. Changes in absorption spectra provoked by conformational changes due to the presence of a substituent and the effect of the chemical nature of the anions are analyzed for Cl, ClO4 and p-toluene sulfonate (PTS). Received: 13 May 1997 / Accepted: 21 July 1997  相似文献   

18.
We demonstrated here a unique method to produce a highly stable and conductive polypyrrole (PPY) nanoparticle film. The procedure entails controlling the redox switching and the electrochemical synthesis of PPY. PPY was synthesized at a very low forming potential or reaction rate in nonaqueous CH2Cl2 solvent to promote the PPY nanoparticle formation. Then its property was further optimized by first electrochemically reducing it at a hydrogen evolution potential in a neutral 0.1 M NaClO4, then in a slightly acidic 0.05 M asparagine electrolyte. The PPY nanoparticle thin film was characterized by AFM, UV-vis and EQCM. The procedures described here have proven to be reproducible. The data provided by the EQCM shows a reversible doping and undoping mechanism of asparagine indicating the presence of a highly conductive PPY variant. Both UV-vis and electrochemical characterization suggest that the PPY film made using our approach has excellent redox activity as well as high stability when characterized in asparagine solution. The reversible doping and undoping of asparagine during redox switching shows great potential of these PPY nanoparticle films as biological membranes for a broad range of biological applications.  相似文献   

19.
The electrochemical properties of poly(N-ethylpyrrole) (PEPy) and poly(N-methylpyrrole) (PMPy) films in propylene carbonate (PC) solution, where ion transport is anion-specific, has been investigated using the cyclic electrochemical quartz crystal microbalance (EQCM) technique and electrochemical impedance techniques. The type of dopant anion (PF6 vs. ClO4) used for the film preparation and the N-substituents (ethyl vs. methyl) have profound effects on the solvent transport behavior, charge capacity, and ionic resistance of the films.  相似文献   

20.
采用滴涂法在铂基底制备了电活性聚苯胺-磷酸锡(PANI-SnP)复合膜电极,考察了该电极在Ni2+、Cd2+溶液的电控离子交换性能. 用傅立叶变换红外光谱和扫描电镜分析观察复合膜的组成及表面形貌;在0.1 mol·L-1 Ni(NO3)2、Cd(NO3)2溶液,通过循环伏安法比较了PANI膜、SnP膜及PANI-SnP复合膜电极的电化学性能,并结合电化学石英晶体微天平技术重点考察了PANI-SnP复合膜的离子交换机制;同时,通过循环伏安法调控复合膜电极的氧化还原电位,结合X射线能谱和X射线光电子能谱分别测定了其氧化和还原状态的元素组成. 结果表明,PANI-SnP复合膜电极在Ni2+、Cd2+溶液均有良好的氧化还原电活性和可逆离子交换性能,其Cd2+离子选择性优于Ni2+离子,通过电控离子交换可使Cd2+离子从镍镉废水高效分离.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号