首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of shear rates on the transcrystallization of polypropylene (PP) on the polytetrafluoroethylene (PTFE) fibers has been quantitatively investigated using a polarized optical microscope equipped with a hot stage and a tensile testing machine. The PTFE fibers were pulled at different rates, from 0.17 to 8.33 μm/s, to induce a range of shear rates, about 0.02 to 1.16 1/s, in the PP melt adjacent to the fiber. The induction time, nucleation rate, and saturated nucleation density at the fiber surface were determined at various crystallization temperatures. It was found that both the nucleation rate and the saturated nucleation density increase with increasing shear rates. However, the induction time is significantly reduced. Based on the theory of heterogeneous nucleation, the interfacial free energy difference functions Δσ;TCL of PP on PTFE fibers at different levels of shear rates were determined and compared with that obtained from crystallization under quiescent conditions. Results showed that the magnitude of ΔσTCL decreased to be about one-third of that for the quiescent crystallization, when a shear rate of 1.16 1/s was applied. The application of a shear stress to the supercooled PP melt by fiber pulling leads to enhance the development of transcrystallinity. Moreover, both the thickness and the crystal growth rate of transcrystalline layers were found to increase with the increasing rate of fiber pulling, especially at low crystallization temperatures where regime III prevails (see text). Surface morphology of PTFE fibers was revealed using a scanning electron microscope and an atomic force microscope. It is argued that the presence of fibrillar-type features at the fiber surface is the main factor responsible for the development of transcrystallinity. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1361–1370, 1998  相似文献   

2.
A computer simulation has been used to predict crystallization kinetics and crystalline morphology in composite materials based on thermally nucleated crystallizable matrices. As demonstrated for athermally nucleated composites, the presence of reinforcing fibers increases the complexity of the system. Fibers are shown to have a dual effect on the spherulitic crystallization process. The influence that fibers have depends on the interplay between the enhancing effects that fibers have on nucleation and the depressing effects that fibers have on spherulitic growth. Fibers that do not provide additional nuclei to the system depress the rate of crystallization relative to an unreinforced polymer, while fibers that add nuclei to the system increase the rate of crystallization. The transcrystalline morphologies that develop in thermally nucleated fiber-reinforced polymers are controlled primarily by the relative numbers of bulk and fiber nuclei. The extent of transcrystalline regions can be suppressed either by increasing the rate of bulk nucleation, or by decreasing the rate of fiber nucleation. Finally, the qualitative appearance of the morphology in the transcrystalline region was found to be indicative of the mode of fiber nucleation. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
The isothermal crystallization of isotactic polypropylene at different temperatures in the presence of fibrous substrates has been investigated. It is shown that preferential transcrystalline growth occurs at the fiber surface and that changes in nucleation density in the bulk material adjacent to the fibers also occur, the extent of which is dependent on temperature and fiber volume fraction. The effects are discussed in terms of the diffusion of heterogeneities in the bulk due to interaction and the adsorption on the fibers.  相似文献   

4.
It has been found that transcrystallinity of polypropylene (PP) develops easily on the polytetrafluoroethylene (PTFE) fiber surface in spite of the low surface energy of the fiber. Effect of the transcrystallinity on the interfacial strength has been extensively investigated using a single-fiber pull-out test. By controlling the crystallization temperature, range 25–130°C, the thickness of the transcrystalline layer varied from 0 to 175 μm for thick specimens, ca. 1 mm thick. Measurements of the adhesive fracture energy, the interfacial shear strength and the frictional stress were carried out for specimens with different embedded fiber lengths. Results show that interfacial strength and fracture energy are independent of the transcrystalline thickness. The calculated value of interfacial shear strength is 3.6 MPa, and the fracture energy for debonding is 2.1 J/m2. The presence of transcrystallinity does not promote the level of adhesion in PTFE/PP composites. However, the frictional stresses at the debonded fiber/matrix interface increase with transcrystalline thickness. It is attributed to the residual stresses which arise from shrinkage when specimens are cooled from crystallization temperature to room temperature. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
Samples of isotactic polypropylene (PP) were zone-solidified in temperature gradients up to 300°C/cm at growth rates down to 3 μm/min. Oriented α-type spherulites were obtained only by nucleation. While β nucleation is extremely rare, the β phase is easily initiated by growth transformations along the oriented α front. Since the β phase was found to grow considerably faster than the α phase, the α-to-β transformation points diverge across the sample, interrupting growth of the oriented α fibrils. This causes subsequent nucleation to yield teardrop-shaped α spherulites. Differential scanning calorimetry (DSC) studies of zone-solidified PP show the β-phase to be favored by slow growth rates, high temperature gradients, and large degrees of superheat in the melt—all of which tend to suppress nucleation. Differential thermograms of largely β-PP obtained at a heating rate of 1°C/min show the actual melting and recrystallization of the β spherulites into the α form.  相似文献   

6.
采用接枝聚合的方法,合成了一种新型聚硅氧烷类向列相液晶共聚物(LCP-H4),然后将LCP-H4与PP在一定工艺条件下密炼共混,得到了一系列的共混样品,采用WAXD、POM与DSC等研究了LCP-H4作为成核剂对PP样品结晶结构、形态与热性能的影响.结果表明,具有独特"液晶"性能的LCP-H4为PP结晶提供了更多的带自由能的晶核与较多的活性点,起到了异相成核的作用,既提高了PP的结晶速度、结晶温度和结晶度,又减小了球晶的尺寸,同时也改变了PP的结晶结构、形态及热力学与动力学,诱导出了β晶.此外,随着增加LCP-H4的含量及结晶温度,对应PP试样的β晶含量(Kβ)呈现先增加后降低的趋势,当LCP-H4含量为0.9%,在128℃等温结晶1h,对应成核PP的Kβ最大,为54%.  相似文献   

7.
碳纤维对聚丙烯结晶行为的影响   总被引:11,自引:1,他引:11  
本文用偏光显微镜和示差扫描量热计(DSC)方法研究了碛纤维对聚丙烯结晶行为的影响。碳纤维表面对聚丙烯结晶过程具有明显的促进作用,纤维表面成核密度轻高,结晶生长成为横穿结晶,结晶特征温度随碳纤维加入而有不同程度的升高。结晶动力学表明:结晶生长本质仍是球晶机理,促进聚丙烯结晶的原因是碳纤维使结晶过程的表面自由能降低。  相似文献   

8.
采用水辅助注塑(WAIM)设备,在不同的注水压力和熔体温度下制备了4种质量比(98/2,96/4,94/6和92/8)的聚丙烯/丙烯腈-苯乙烯共聚物(PP/SAN)共混物制品.采用偏光显微镜(POM)和扫描电子显微镜(SEM),研究了WAIM PP/SAN共混物制品的结晶形态和相形态.研究发现,高压水的穿透作用所引起的强剪切和快速冷却可诱导SAN在PP基体中原位成纤,并诱导PP在SAN纤维表面形成大量的晶核而最终形成横晶.SAN含量为4 wt%时,所形成横晶的含量随水压的提高而增加,随温度的降低而大幅增加.当SAN含量较低(2 wt%)时,制品中没有横晶形成.  相似文献   

9.
The quiescent nonisothermal bulk crystallization kinetics of two high-density polyethylene resins were investigated by a modified light-depolarizing microscopy (LDM) technique. The technique allows studies at average cooling rates up to 2500°C/min. The polymer was found to crystallize at a pseudo-isothermal temperature even at these very high cooling rates. The overall bulk crystallization rate increased rapidly as the cooling rate and supercooling increased. Crystallization kinetics was analyzed by Avrami analysis. Avrami exponents near 3 suggested spherical growth geometry and instantaneous nucleation at predetermined sites. Observation of spherulites by optical microscopy together with a number density of spherulites that changed little with increase in cooling rate or supercooling supported this model of crystallization behavior. Analysis of the half-time of crystallization based on the Lauritzen and Hoffman secondary nucleation theory indicated that the regime II-III transition was found to occur at a degree of supercooling of approximately 22°C. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 681–692, 1998  相似文献   

10.
半晶聚合物复合材料中的横晶   总被引:2,自引:0,他引:2  
半晶聚合物复合材料,尤其是纤维增强的半晶聚合物复合材料,在其界面区常有横晶结构生成。本文综述了横晶自发现至今的研究情况,对横晶的形成和生长机理进行了描述,对影响横晶生成和性质的因素进行了分析,着重介绍了几种典型半晶聚合物复合材料体系的横晶形态,并讨论了横晶对界面特性和复合材料性能的影响。  相似文献   

11.
PP/clay composites with different dispersions, namely, exfoliated dispersion, intercalated dispersion and agglomerates and particle-like dispersion, were prepared by direct melt intercalation or compounding. The effect of clay dispersion on the crystallization and morphology of PP was investigated via PLM, SAXS and DSC. Experimental results show that exfoliated clay layers are much more efficient than intercalated clay and agglomerates of clay in serving as nucleation agent due to the nano-scale dispersion of clay, resulting in a dramatic decrease in crystal size (lamellar thickness and spherulites) and an increase of crystallization temperature and crystallization rate. On the other hand, a decrease of melting temperature and crystallinity was also observed in PP/clay composites with exfoliated dispersion, due to the strong interaction between PP and clay. Compared with exfoliated clay layers, the intercalated clay layers have a less important effect on the crystallization and crystal morphology. No effect is seen for samples with agglomerates and particle-like dispersion, in regard to melting temperature, crystallization temperature, crystal thickness and crystallinity.  相似文献   

12.
A body of experimental evidence suggests that reinforcing fibers influence both the crystallization kinetics and morphology of those composite materials that are based on crystallizable thermoplastics. The absence of an analytical model to predict the effect of fibers on crystallization has hindered data analysis. A new approach, using computer simulation of polymer crystallization, makes it possible to study the influence that reinforcing fibers have on the crystallization kinetics and morphology of semicrystalline polymers. Fibers depress the crystallization rate relative to an unreinforced polymer since they constrain spherulitic growth by an impingement mechanism. On the other hand, reinforcing fibers can also enhance crystallization rate by providing added surface nucleation sites. This work describes a two-dimensional simplification of the crystallization process that occurs in bulk materials. It is demonstrated that the relative bulk and fiber nucleation densities, in addition to the fiber fraction, fiber diameter, and spherulitic growth rate control the crystallization kinetics and also the spherulitic and transcrystalline morphologies that develop in reinforced thermoplastic composites. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
A numerical method has been employed to calculate crystallization temperature as a function of position in slabs or films of polyethylene quenched to various temperatures. The method is iterative, and combines a recent theoretical fit to empirical data for rate of crystal growth as a function of temperature with a solution to the thermal diffusion equation which takes latent heat into account. Results apply strictly only to transcrystalline regions near external surfaces but also provide lower limits to crystallization temperatures throughout the interiors of samples where spherulites nucleate ahead of the general crystallization front. Emphasis is given to assessing the relative importance of various physical parameters in determining crystallization temperatures.  相似文献   

14.
Thermoplastic nanocomposites were prepared in a laboratory mixer using polypropylene (PP) and different amounts of single-walled carbon nanotubes (SWNT) in the range 0.25–2 wt%. The effect of SWNT content on the thermal and mechanical properties and also morphology of the PP/SWNT nanocomposites were studied. The results obtained from nonisothermal crystallization of PP and the nanocomposites, which were carried out using the differential scanning calorimetry technique, showed that not only the overall rate of crystallization of PP increased when SWNT was added to the polymer but also the rate of nucleation was higher and the crystallite size distribution was more uniform for the nanocomposites than for PP. From the optical microscopy studies, it was found that the PP spherulites decreased in size when SWNT was introduced into the polymer and also the mature spherical shaped crystals of PP changed in part to the immature kidney- or bean-shaped crystal forms in the nanocomposites. In addition, the crystallization kinetics was also studied by using isothermal spherulitic growth rate, and the values of nucleation constant, Kg, and end surface free energy, σe, were calculated for PP and the nanocomposites according to Lauritzen–Hoffman theory. The reductions of these two parameters were in agreement with the fact that the rate of crystallization of PP in nanocomposites was higher than that of the pristine polymer.  相似文献   

15.
A three-dimensional computer simulation has been used to predict crystallization kinetics and crystalline morphology in composite materials that are based on crystallizable thermoplastics. Reinforcing fibers in three-dimensional simulations show similar behavior to those in two-dimensional simulations; fibers suppress crystallization relative to an unreinforced polymer since they constrain spherulitic growth by an impingement mechanism, and also enhance crystallization by providing added surface nucleation sites. The effects of varying controlling parameters on crystallization kinetics and morphology are qualitatively the same as those observed in the two-dimensional case. The relative bulk and fiber nucleation denisities, in addition to the fiber volume fraction, fiber diameter, and spherulitic growth rate control the crystallization kinetics and crystalline morphology that develop in reinforced thermoplastic composites. It is more difficult to achieve the transcrystalline morphology in slices of three-dimensional composites than it is in two-dimensional composites because nuclei in 3-D systems are not constrained to positions in or near a 2-D plane. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
Crystallization of compression-molded isotactic polypropylene and polyethylene is invariably spherulitic; generally, nucleation occurs randomly throughout the sample. In a special case where nucleation predominates at the surface, spherulitic growth centers become crowded and are forced to propagate unidirectionally into the bulk (transcrystallinity). Conditions for the formation of transcrystallinity have been investigated by optical and scanning electron microscopy. The occurrence of transcrystallinity is attributed to heterogeneous nucleation induced at the mold surface. To be effective, the mold surface must have a nucleating efficiency equal to or greater than that of adventitious nuclei present in the polymer. As the crystallization temperature approaches the melting point, the activity of mold surfaces is found to increase leading invariably to transcrystalline formation. The degree of activity of various mold surfaces correlates with the known activity of specific dispersed nucleating agents having similar chemical structures. Contrary to claims in the literature, the surface energy of the mold surface and temperature gradients across the melt surface do not play a primary role in transcrystalline formation of polypropylene.  相似文献   

17.
王志刚 《高分子科学》2013,31(9):1276-1283
In this work the nucleation and growth of spherulites for the below polylactide (PLA) layer in poly(ε-caprolactone)/polylactide (PCL/PLA) double-layer films during isothermal crystallization at various temperatures above the melting point of PCL have been investigated by using polarized optical microscopy (POM). It is revealed that two types of spherulitic morphologies are observed in PCL/PLA double-layer films. One is the well defined highly birefringent spherulites, and the other one is the coarse spherulites. It is interesting to find that the spherulitic growth rate of the coarse spherulites is higher than that of the well defined spherulites. It is thought that the coarse spherulites nucleate and grow with the assistance of the interfaces between the PCL and PLA layers, and the well defined highly birefringent spherulites only nucleate and grow in the PLA layer.  相似文献   

18.
The flexural properties of isotactic polypropylene (PP) matrix composites reinforced with 5–30 vol% of unidirectional pitch‐based carbon, polyacrylonitrile (PAN)‐based carbon, e‐glass or aramid fibers were measured using both static and dynamic test methods. Previous research has shown that these pitch‐based carbon and aramid fibers are capable of densely nucleating PP crystals at the fiber surface, leading to the growth of an oriented interphase termed a “transcrystalline layer” (TCL), while the e‐glass and PAN‐based carbon fibers show no nucleating ability. The PP matrices examined included unmodified homopolymers, nucleated homopolymers and PP grafted with maleic anhydride (MA). The composites based on the unmodified PP homopolymers all exhibited poor fiber/matrix adhesion, regardless of fiber type and presence or absence of a TCL. The addition of nucleating agent to the PP matrix had no measurable effect on either the amount of TCL material in pitch‐based carbon‐fiber‐reinforced composites, as measured by wide‐angle X‐ray scattering, WAXS, or the static flexural properties of the composites reinforced with either type of carbon fiber. However, MA grafting reduced the transcrystalline fraction of the matrix in pitch‐based carbon‐fiber‐reinforced composites; at the highest level of MA grafting, the TCL was completely suppressed. In addition, high levels of MA grafting improved the transverse flexural modulus of the composites containing both types of carbon fibers, and reduced the extent of fiber pull‐out, indicating an improvement in fiber/matrix adhesion. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
In the initial stage of the development of transcrystallinity, nuclei appear sporadically on the substrate. The growth rate and melting temperature of the transcrystalline region are found to be the same as those of spherulites nucleated in the bulk of the polymer. Nucleation densities ns at the interface, and nb in bulk, for the crystallization of isotactic polypropylene, poly(ethylene oxide), and poly(butene-1) in contact with various substrates, have been measured by counting the number of spherulites generated. Despite variations in the results from various causes, the quantities ns and ns/nb are useful parameters for characterizing the nucleating ability of various substrates.  相似文献   

20.
This rapid communication reports a summary of the key findings of crystallization kinetics studies of unfractionated high density (linear) polyethylene at extremely large supercoolings. We report, for the first time, the maximum in crystal growth rate-crystallization temperature data for linear polyethylene, which has been sought by many researchers since the 1950s. The maximum growth rate was found to occur in the range of 70-75 °C with two separate methods. The kinetics studies were performed using a newly developed quench-crystallization technique based on depolarized reflection light microscopy that is capable of achieving enormously higher quench rates than existing methods. Typical onset crystallization temperatures accessed with this technique range from 40 to 90 °C. Bulk growth rates of crystals were obtained as the reciprocal of crystallization half times measured from the change in the depolarized light intensity upon direct crystallization from the melt. Separately, radial growth rates of spherulites were measured over a wide range of supercoolings. Secondary nucleation analysis of the crystal growth rates resulted in single linear fits extending into deep regime III, suggesting no change in mechanism of formation of the crystals at the largest supercoolings. The deeply quenched films, crystallized at temperatures below the maximum, contain non-impinged spherulites, capable of further crystallization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号