首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let k(y) > 0, 𝓁(y) > 0 for y > 0, k(0) = 𝓁(0) = 0 and limy → 0k(y)/𝓁(y) exists; then the equation L(u) ≔ k(y)uxx – ∂y(𝓁(y)uy) + a(x, y)ux = f(x, y, u) is strictly hyperbolic for y > 0 and its order degenerates on the line y = 0. Consider the boundary value problem Lu = f(x, y, u) in G, u|AC = 0, where G is a simply connected domain in ℝ2 with piecewise smooth boundary ∂G = ABACBC; AB = {(x, 0) : 0 ≤ x ≤ 1}, AC : x = F(y) = ∫y0(k(t)/𝓁(t))1/2dt and BC : x = 1 – F(y) are characteristic curves. Existence of generalized solution is obtained by a finite element method, provided f(x, y, u) satisfies Carathéodory condition and |f(x, y, u)| ≤ Q(x, y) + b|u| with QL2(G), b = const > 0. It is shown also that each generalized solution is a strong solution, and that fact is used to prove uniqueness under the additional assumption |f(x, y, u1) – f(x, y, u2| ≤ C|u1u2|, where C = const > 0.  相似文献   

2.
Let X=(x1, ..., xn) and Y=(y1, ..., ym) be independent samples from populations Gx and Gy, x(1) ,... x(n) be ordered statistics constructed from the sample X. A model of trials associated with the occurrence of dependent events Ak={yk (x(i)}, x(j), i < j, k=1, 2, ..., m, where x(i), x(j) are order statistics, is considered. This model is a generalization of the Bernoulli model. Distribution of frequencies of occurrences of events Ak and the limit theorems which describe asymptotic properties of these frequencies are investigated.Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 42, No. 4, pp. 518–528, April, 1990.  相似文献   

3.
We consider the equation y m u xx u yy b 2 y m u = 0 in the rectangular area {(x, y) | 0 < x < 1, 0 < y < T}, where m < 0, b ≥ 0, T > 0 are given real numbers. For this equation we study problems with initial conditions u(x, 0) = τ(x), u y (x, 0) = ν(x), 0 ≤ x ≤ 1, and nonlocal boundary conditions u(0, y) = u(1, y), u x (0, y) = 0 or u x (0, y) = u x (1, y), u(1, y) = 0 with 0≤yT. Using the method of spectral analysis, we prove the uniqueness and existence theorems for solutions to these problems  相似文献   

4.
It has been observed13 that the propagation of acoustic waves in the region Ω0= ?2 × (0, 1), which are generated by a time-harmonic force density with compact support, leads to logarithmic resonances at the frequencies ω = 1, 2,… As we have shown9 in the case of Dirichlet's boundary condition U = 0 on ?Ω, the resonance at the smallest frequency ω = 1 is unstable and can be removed by a suitable small perturbation of the region. This paper contains similar instability results for all resonance frequencies ω = 1, 2,… under more restrictive assumptions on the perturbations Ω of Ω0. By using integral equation methods, we prove that absence of admissible standing waves in the sense of Reference 7 implies the validity of the principle of limit amplitude for every frequency ω ≥ 0 in the region Ω =Ω0 ?B, where B is a smooth bounded domain with B??Ω0. In particular, it follows from Reference 7 in the case of Dirichlet's boundary condition that the principle of limit amplitude holds for every frequency ω ≥ 0 if n · x ′ ? 0 on ? B, where x ′ = (x1, x2, 0) and n is the normal unit vector pointing into the interior B of ? B. In the case of Neumann's boundary condition, the logarithmic resonance at ω = 0 is stable under the perturbations considered in this paper. The asymptotic behaviour of the solution for arbitary local perturbations of Ω0 will be discussed in a subsequent paper.  相似文献   

5.
For x and y vertices of a connected graph G, let TG(x, y) denote the expected time before a random walk starting from x reaches y. We determine, for each n > 0, the n-vertex graph G and vertices x and y for which TG(x, y) is maximized. the extremal graph consists of a clique on ?(2n + 1)/3?) (or ?)(2n ? 2)/3?) vertices, including x, to which a path on the remaining vertices, ending in y, has been attached; the expected time TG(x, y) to reach y from x in this graph is approximately 4n3/27.  相似文献   

6.
This paper presents a demonstrably convergent method of feasible directions for solving the problem min{φ(ξ)| gi(ξ)?0i=1,2,…,m}, which approximates, adaptively, both φ(x) and ▽φ(x). These approximations are necessitated by the fact that in certain problems, such as when φ(x) = max{f(x, y) ¦ y ? Ωy}, a precise evaluation of φ(x) and ▽φ(x) is extremely costly. The adaptive procedure progressively refines the precision of the approximations as an optimum is approached and as a result should be much more efficient than fixed precision algorithms.It is outlined how this new algorithm can be used for solving problems of the form miny ? Ωxmaxy ? Ωyf(x, y) under the assumption that Ωmξ={x|gi(x)?0, j=1,…,s} ∩Rn, Ωy={y|ζi(y)?0, i-1,…,t} ∩ Rm, with f, gj, ζi continuously differentiable, f(x, ·) concave, ζi convex for i = 1,…, t, and Ωx, Ωy compact.  相似文献   

7.
8.
In this paper, we consider the Prandtl system for the non-stationary boundary layer in the vicinity of a point where the outer flow has zero velocity. It is assumed that U(t, x, y) = x^mU1(t, x), where 0 〈 x 〈 L and m 〉 1. We establish the global existence of the weak solution to this problem. Moreover the uniqueness of the weak solution is proved.  相似文献   

9.
Results giving the exact crossing number of an infinite family of graphs on some surface are very scarce. In this paper we show the following: for G = Qn × K4.4, cry(G)-m(G) = 4m, for 0 ? = m ? 2n. A generalization is obtained, for certain repeated cartesian products of bipartite graphs. Nonorientable analogs are also developed.  相似文献   

10.
For a finite poset P = (V, ≤ ), let _s(P){\cal B}_s(P) consist of all triples (x,y,z) ∈ V 3 such that either x < y < z or z < y < x. Similarly, for every finite, simple, and undirected graph G = (V,E), let Bs(G){\cal B}_s(G) consist of all triples (x,y,z) ∈ V 3 such that y is an internal vertex on an induced path in G between x and z. The ternary relations Bs(P){\cal B}_s(P) and Bs(G){\cal B}_s(G) are well-known examples of so-called strict betweennesses. We characterize the pairs (P,G) of posets P and graphs G on the same ground set V which induce the same strict betweenness relation Bs(P)=Bs(G){\cal B}_s(P)={\cal B}_s(G).  相似文献   

11.
Two-Point Boundary Value Problems for Duffing Equations across Resonance   总被引:1,自引:0,他引:1  
In this paper, we consider the equation y″+f(x,y)=0 with a nonresonance condition of the form Af y (x,y)≤B, where (k−1)2<Ak 2<⋅⋅⋅<m 2B<(m+1)2, k,m∈ℤ+. With optimal control theory and the Schauder fixed-point theorem, by introducing a new cost functional, we obtain a new existence and uniqueness result for the above equation with two-point boundary-value conditions. This work was supported by NSFC Grant 10501017 and 985 Project of Jilin University.  相似文献   

12.
Summary. Let (G, +) and (H, +) be abelian groups such that the equation 2u = v 2u = v is solvable in both G and H. It is shown that if f1, f2, f3, f4, : G ×G ? H f_1, f_2, f_3, f_4, : G \times G \longrightarrow H satisfy the functional equation f1(x + t, y + s) + f2(x - t, y - s) = f3(x + s, y - t) + f4(x - s, y + t) for all x, y, s, t ? G x, y, s, t \in G , then f1, f2, f3, and f4 are given by f1 = w + h, f2 = w - h, f3 = w + k, f4 = w - k where w : G ×G ? H w : G \times G \longrightarrow H is an arbitrary solution of f (x + t, y + s) + f (x - t, y - s) = f (x + s, y - t) + f (x - s, y + t) for all x, y, s, t ? G x, y, s, t \in G , and h, k : G ×G ? H h, k : G \times G \longrightarrow H are arbitrary solutions of Dy,t3g(x,y) = 0 \Delta_{y,t}^{3}g(x,y) = 0 and Dx,t3g(x,y) = 0 \Delta_{x,t}^{3}g(x,y) = 0 for all x, y, s, t ? G x, y, s, t \in G .  相似文献   

13.
Akira Saito 《Combinatorica》1996,16(3):433-437
A graphG is said to bek-path-connected if every pair of distinct vertices inG are joined by a path of length at leastk. We prove that if max{deg G x , deg G y }k for every pair of verticesx,y withd G (x,y)=2 in a 2-connected graphG, whered G (x,y) is the distance betweenx andy inG, thenG isk-path-connected.  相似文献   

14.
Some parallel results of Gross' paper (Potential theory on Hilbert space, J. Functional Analysis1 (1967), 123–181) are obtained for Uhlenbeck-Ornstein process U(t) in an abstract Wiener space (H, B, i). Generalized number operator N is defined by Nf(x) = ?lim∈←0{E[f(Uξ))] ? f(x)}/Eξ, where τx? is the first exit time of U(t) starting at x from the ball of radius ? with center x. It is shown that Nf(x) = ?trace D2f(x)+〈Df(x),x〉 for a large class of functions f. Let rt(x, dy) be the transition probabilities of U(t). The λ-potential Gλf, λ > 0, and normalized potential Rf of f are defined by Gλf(X) = ∫0e?λtrtf(x) dt and Rf(x) = ∫0 [rtf(x) ? rtf(0)] dt. It is shown that if f is a bounded Lip-1 function then trace D2Gλf(x) ? 〈DGλf(x), x〉 = ?f(x) + λGλf(x) and trace D2Rf(x) ? 〈DRf(x), x〉 = ?f(x) + ∫Bf(y)p1(dy), where p1 is the Wiener measure in B with parameter 1. Some approximation theorems are also proved.  相似文献   

15.
We consider an Abel equation (*)y’=p(x)y 2 +q(x)y 3 withp(x), q(x) polynomials inx. A center condition for (*) (closely related to the classical center condition for polynomial vector fields on the plane) is thaty 0=y(0)≡y(1) for any solutiony(x) of (*). We introduce a parametric version of this condition: an equation (**)y’=p(x)y 2 +εq(x)y 3 p, q as above, ℂ, is said to have a parametric center, if for any ε and for any solutiony(ε,x) of (**),y(ε,0)≡y(ε,1). We show that the parametric center condition implies vanishing of all the momentsm k (1), wherem k (x)=∫ 0 x pk (t)q(t)(dt),P(x)=∫ 0 x p(t)dt. We investigate the structure of zeroes ofm k (x) and on this base prove in some special cases a composition conjecture, stated in [10], for a parametric center problem. The research of the first and the third author was supported by the Israel Science Foundation, Grant No. 101/95-1 and by the Minerva Foundation.  相似文献   

16.
Let R be a prime ring, U the Utumi quotient ring of R, C = Z(U) the extended centroid of R, L a non-central Lie ideal of R, H and G non-zero generalized derivations of R. Suppose that there exists an integer n ≥ 1 such that (H(u)uuG(u)) n = 0, for all uL, then one of the following holds: (1) there exists cU such that H(x) = xc, G(x) = cx; (2) R satisfies the standard identity s 4 and char (R) = 2; (3) R satisfies s 4 and there exist a, b, cU, such that H(x) = ax+xc, G(x) = cx+xb and (a − b) n = 0.  相似文献   

17.
In this article, we study an important subalgebra of the tensor product partition algebra P k (x)? P k (y), denoted by P k (x, y) and called “Class Partition Algebra.” We show that the algebra P k (n, m) is the centralizer algebra of the wreath product S m ? S n . Furthermore, the algebra P k (x, y) and the tensor product partition algebra P k (x)? P k (y) are subalgebras of the G-colored partition algebra P k (x;G) and G-vertex colored partition algebra P k (x, G) respectively, for every group G with |G|=y ≥ 2k.  相似文献   

18.
We consider an Abel equation (*)y’=p(x)y 2 +q(x)y 3 withp(x), q(x) polynomials inx. A center condition for (*) (closely related to the classical center condition for polynomial vector fields on the plane) is thaty 0=y(0)≡y(1) for any solutiony(x) of (*). Folowing [7], we consider a parametric version of this condition: an equation (**)y’=p(x)y 2 +εq(x)y 3 p, q as above, ε ∈ ℂ, is said to have a parametric center, if for any ɛ and for any solutiony(ɛ,x) of (**)y(ɛ, 0)≡y(ɛ, 1).. We give another proof of the fact, shown in [6], that the parametric center condition implies vanishing of all the momentsm k (1), wherem k (x)=∫ 0 x pk (t)q(t)(dt),P(x)=∫ 0 x p(t)dt. We investigate the structure of zeroes ofm k (x) and generalize a “canonical representation” ofm k (x) given in [7]. On this base we prove in some additional cases a composition conjecture, stated in [6, 7] for a parametric center problem. The research of the first and the third author was supported by the Israel Science Foundation, Grant No. 101/95-1 and by the Minerva Foundation.  相似文献   

19.
ESTIMATIONOFTHEPARAMETERSFORUNSTABLEARMODELSANHoNGZHI(安鸿志)(InstituteofAppliedMathematics,theChineseAcademyofScience,Beijing10...  相似文献   

20.
In this article, the authors establish the conditions for the extinction of solutions, in finite time, of the fast diffusive polytropic filtration equation u t ?=?div(|?u m | p?2?u m )?+?aΩ u q (y,?t)dy with a, q, m?>?0, p?>?1, m(p???1)?R N (N?>?2). More precisely speaking, it is shown that if q?>?m(p???1), any non-negative solution with small initial data vanishes in finite time, and if 0?q?m(p???1), there exists a solution which is positive in Ω for all t?>?0. For the critical case q?=?m(p???1), whether the solutions vanish in finite time or not depends on the comparison between a and μ, where μ?=?∫?Ωφ p?1(x)dx and φ is the unique positive solution of the elliptic problem ?div(|?φ| p?2?φ)?=?1, x?∈?Ω; φ(x)?=?0, x?∈??Ω.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号