首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用动态力学损耗温度谱作为测试手段,研究了非晶态PET膜片在78—112℃温度范围内的单轴拉伸。实验结果说明,在较低温度下所得结晶的拉伸试样,完全由于应变诱发结晶,发生在应力-应变曲线的屈服后应力开始上升的阶段。在较高温度下(90℃或更高)拉伸可得非晶态而且光学各向同性的试样,是由于分子链的小尺度取向在拉伸过程中已完全热松弛所致,而分子链的大尺度取向要通过高弹态流动而松弛,其速率较慢,用拉伸后试样两端固定时的应力松弛进行了观察。在较低温度下应力松弛后仍为非晶态,在较高温度下应力松弛到起始应力的1O%下才开始结晶。FTIR研究表明在这种状态下的结晶有一结晶诱导期,其时间尺度与应力松弛阶段相当。  相似文献   

2.
A model for large deformation of polymer gels with physical cross-linking is developed and shown to be in good agreement with experimental stress-strain curves which show strain hardening in intermediate strains followed by strain softening in large deformations near the yield strain. The model takes into account the coil-helix transition equilibrium and allows for the distribution of the end-to-end distance. The gel is considered to be formed by long flexible chains and crystalline zones acting as junctions of the chains. The number of segments contained in a flexible chain is variable due to the equilibrium between the two regions. As the end-to-end distance increases due to the deformation, more and more segments are reeled out from the junction zone. Finally, one end of the chain is librated from the junction and the chain becomes dangling. The appearance of dangling chains causes the strain softening because they cease to contribute to the elasticity. From the parameter dependence of the stress-strain relations, it was found that the yield behavior depends strongly on the distribution of end-to-end distance. The yield strain is approximately given by the ratio of the upper limit of the number of segments and the average end-to-end distance. The standard deviation of the end-to-end distance affects significantly the width of the peak in the stress-strain curve, thus determining the degree of strain softening.  相似文献   

3.
Samples of ultra‐high molecular weight polyethylene, in which the chain topology within the amorphous component was altered using two‐stage processing, including crystallization at high pressure in the first step, were produced and their deformation behavior in the plane‐strain compression was studied. Deformation and recovery experiments demonstrated that the state of the molecular network governed by entanglement density is one of the primary parameters controlling the response of the material on the imposed strain, especially at moderate and high strains. Any change in the concentration of entanglements markedly influences the shape of the true stress–true strain curve. The strain hardening modulus decreases while the onset of strain hardening increases with a decrease of the entanglement density within the amorphous component. Density of entanglements also influences the amount of rubber‐like recoverable deformation and permanent plastic flow. In material of the reduced concentration of entanglements permanent flow appears easier and sets in earlier than in the material with a higher entanglement density, becoming a favorable deformation mechanism at moderate strains. As a result, strong strain hardening is postponed to higher strain when compared with the samples of equilibrium entanglement density. In the samples of an increased entanglement density the molecular network becomes stiffer, with a reduced ability of strain induced disentangling of chains. Consequently, there is a less permanent flow and strain hardening begins earlier than in the reference material of an unaltered chain topology. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 276–285, 2010  相似文献   

4.
The strain hardening behavior of model polymer glasses is studied with simulations over a wide range of entanglement densities, temperatures, strain rates, and chain lengths. Entangled polymers deform affinely at scales larger than the entanglement length as assumed in entropic network models of strain hardening. The dependence of strain hardening on strain and entanglement density is also consistent with these models, but the temperature dependence has the opposite trend. The dependence on temperature, rate, and interaction strength can instead be understood as reflecting changes in the flow stress. Microscopic analysis of local rearrangements and the primitive paths between entanglements is used to test models of strain hardening. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3487–3500, 2006  相似文献   

5.
In this study, the rate‐ and temperature‐dependent strain hardening and the Bauschinger effect is studied for three glassy polymers. It appeared that for all materials, an equal distribution of elastic and viscous hardening was necessary to accurately predict the Bauschinger effect, as well as the rate‐ and temperature‐dependent strain hardening response. As for the elastic contribution, the viscous contribution appears to increase with an increase in entanglement network density. Investigating the effect of temperature on the Bauschinger effect revealed that at elevated temperatures the model predictions are not accurately enough. It is shown that this is caused by the magnitude of the elastic hardening contribution; to improve the predictions, a temperature‐dependent elastic contribution is necessary. © 2019 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 1001–1013  相似文献   

6.
The strain hardening modulus, defined as the slope of the increasing stress with strain during large strain uniaxial plastic deformation, was extracted from a recently proposed constitutive model for the finite nonlinear viscoelastic deformation of polymer glasses, and compared to previously published experimental compressive true stress versus true strain data of glassy crosslinked poly(methyl methacrylate) (PMMA). The model, which treats strain hardening predominantly as a viscous process, with only a minor elastic contribution, agrees well with the experimentally observed dependence of the strain hardening modulus on strain rate and crosslink density in PMMA, and, in addition, predicts the well-known decrease of the strain hardening modulus in polymer glasses with temperature. General scaling aspects of continuum modeling of strain hardening behavior in polymer materials are also presented. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1464–1472, 2010  相似文献   

7.
The strain dependence of the elastic, anelastic and plastic components of deformation energy was determined by means of cyclic stress-strain experiments for a set of polyamide 6,6 fibers obtained by different processing techniques. Small angle X-ray scattering experiments revealed that the deformation of the supermolecular lattices of the fibers, consisting of crystalline lamellae and amorphous regions, was identical to the macroscopic deformation of the sample.ESR experiments showed that deformation gives rise to chain rupture events obviously occurring in the amorphous regions in all fibers above a critical strain level. The strain dependence of the free radical concentration was found to agree closely with the corresponding behavior of the plastic deformation energy. This indicates that chain rupture events influence stress-strain properties, particularly at large strains. The absolute values of the experimentally determined plastic deformation energy and of the theoretical value, however, calculated from the number and energy balance of ruptured chains, disagree strongly. Possible explanations are free radical recombinations and secondary dissipative processes resulting from chain rupture.  相似文献   

8.
An impression test using a flat indenter with three different diameters 0.5, 1, and 2 mm is proposed to study the plastic flow of a polypropylene copolymer. By comparing the flow characteristics of the impression test with the uniaxial tension and compression tests, it is found that a yield drop occurs in the compression, and geometrical necking appears in tension, but no load drop and only strain hardening is found in the impression tests. Furthermore, the plastic behaviors of the impression before the yield are also similar to those of the compression test because there is a correlation of the stress-strain curve between impression and compression by only adjusting the scaling factors. The plastic zone size underneath the indenter is only slightly larger than the indenter diameter and, as the load is applied, the mean pressure across the face of the indenter is smaller than that of the metals due to the large intermolecular distance in the polypropylene copolymer. The impression test is also used to measure the strength, elastic modules, strain-hardening exponent, and strain-rate sensitivity in a manner of shallow penetration and miniature deformation, which indicates that the impression test can be employed to study the mechanical properties of the thin-film polypropylene copolymer. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
Oriented high‐density polyethylene (HDPE), prepared by melt extrusion drawing, has been employed to address the correlation between cavitation and lamellar fragmentation at large strain. This has been done by investigating the volume strain, elastic recovery properties, and microscopic morphology. The results indicate that the reversible volume strain becomes saturation at a true strain of about 0.3, which is essentially consistent with the critical one related to lamellar fragmentation (point C). Morphological observations on the deformed samples provide structural insights into above deformation behaviors. Enlarged voids are hard to recover due to dominant plastic deformation of crystals once lamellar fragmentation sets in and thus a transition of reversible volume strain with strain is presented. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1202–1206, 2008  相似文献   

10.
纳米复合水凝胶(nanocomposite hydrogels,NC凝胶)由于其简便的制备方法、独特的组成、优异的力学性能、高光学透明度以及良好的溶胀/去溶胀性等,引起了广泛的关注.近年来,本课题组在NC凝胶的力学行为及刺激响应性NC凝胶的制备方面取得了可喜的研究成果.观察到新合成的和溶胀平衡的聚N-异丙基丙烯酰胺(PNIPAm)-锂藻土LaponiteNC凝胶的超拉伸性,发现了在大应变下的应变硬化现象;发现利用Mooney-Rivlin方程可以描述NC凝胶的压缩应力-应变,但不能描述较大的应变硬化;Creton模型能很好地描述NC凝胶在大形变下的应力-应变曲线,特别是凝胶的应变硬化;从NC凝胶小应变下的平衡剪切模量得到了有效交联密度,观察到NC凝胶形变-回复过程的迟滞现象,测定了NC凝胶的松弛指数.我们认为NC凝胶具有超拉伸性的原因是其较低的交联密度和适度的松弛速率;在响应性NC凝胶的制备方面,发现了溶胶型Laponite的水分散液的稳定窗口,避免了加入离子性单体引起的聚集沉淀;通过共聚制备了具有超拉伸性、pH响应或温度和pH双响应的透明NC凝胶.本文主要综述了我们课题组在NC凝胶力学行为及响应性NC凝胶领域的一些研究进展,并分析了NC凝胶研究领域仍然未解决的科学问题,以及今后可能的发展方向.  相似文献   

11.
The effect of chain stiffness and entanglements on the elastic behavior and microscopic structure of cross-linked polymer networks was studied using Monte Carlo simulations. We investigated the behavior of entangled and entanglement-free networks at various degrees of chain stiffness and densities. Based on previous results that indicated that trapped entanglements prevent strain-induced order-disorder transitions in semiflexible chain networks, we prepared the entangled networks by end-linking the chains in very dilute conditions so as to minimize the extent of trapped entanglements. We also considered the entanglement-free case by using a "diamond" structure. We found that the presence of even a very small amount of trapped entanglements is enough to prevent a discontinuous strain-induced transition to an ordered phase. In these mildly entangled networks, a nematiclike order is eventually attained at high extensions but the elastic response remains continuous and the cross-links remain uniformly distributed through the simulation box. The entanglement-free diamond networks on the other hand show discontinuities in their stress-strain data. Networks at higher densities exhibit a more stable ordered phase and show an unusual staircaselike stress-strain curve. This is the result of a stepwise extension mechanism in which the chains form ordered domains that exclude the cross-links. Extension is achieved by increasing the number of these ordered domains in the strain direction. Cross-links aggregate in the spaces between these ordered domains and form periodic bands. Each vertical upturn in the stress-strain data corresponds to the existence of an integer number of ordered domains. This stepwise elastic behavior is found to be similar to that exhibited by some tough natural materials.  相似文献   

12.
This work extends our previous understanding concerning the nonlinear responses of entangled polymer solutions and melts to large external deformation in both simple shear and uniaxial extension. Many similarities have recently been identified for both step strain and startup continuous deformation, including elastic yielding, i.e., chain disentanglement after cessation of shear or extension, and emergence of a yield point during startup deformation that involves a deformation rate in excess of the dominant molecular relaxation rate. At a sufficiently high constant Hencky rate, uniaxial extension of an entangled melt is known to produce window-glass-like rupture. The present study provides evidence against the speculation that chain entanglements tie up into "dead knots" in constant-rate extension because of the exponentially growing chain stretching with time. In particular, it is shown that even Instron-style tensile stretching, i.e., extending a specimen by applying a constant velocity on both ends, results in rupture. Yet, in the same rate range, the same entangled melt only yields in simple shear, and the resulting shear banding is clearly not a characteristic of rupture. Thus, we conclude that chain entanglements respond to simple shear in the manner of yielding whereas uniaxial extension is rather effective in causing some entanglements to lock up, making it impossible for the entanglement network to yield at high rates.  相似文献   

13.
Well established routes for obtaining stiff and strong polyethylene (PE) involve solid state drawing either of solution crystallized gel films or melt crystallized spherulitic PE. The aim of this work is to show the potential of melt deformation as an alternative route for obtaining highly oriented products. Our previous work on the melt deformation route showed that oriented PE fibers could be directly extruded under appropriately controlled conditions [8,9]. Here, we show that PE films (or filaments) can also be melt drawn in the temperature window 130–160 °C, thus yielding oriented products. The advantage of melt drawing over direct melt extrusion is that it allows a wider operational latitude and thus does not require such carefully controlled conditions.The morphology produced by melt deformation is different from solid state deformation and consists of extended chain fibrils with platelet overgrowths. The relative amount of fibrils and platelets depends on operating parameters. The temperature window of PE melt drawing is identified with the regime where some flow induced crystallization takes place. The conditions for melt drawability are of wider generality for crystallizable flexible chain polymers. They are: (i) adequate strain rate to overcome entropie resistance to chain extension, (ii) but not high enough to activate the elastic response of the transient networks in the entangled system, (iii) sufficient strain to fully extend the chain, (iv) appropriate temperature for flow-induced crystallization and strain hardening, and (v) cooling to freeze the oriented structure.Ultra high molecular weight PEs were not the most suitable for melt drawing due to their high recoverable elongation in the melt (melt elasticity) in addition to added limitations imposed by their nascent grain systeme. Our work suggests that an optimum molecular weight for melt drawing is¯M w(400–900)×103 with further possibilities for improvement through multimodal distributions.  相似文献   

14.
The tensile deformation behaviour of poly(1-butene) and two of its ethylene copoloymers was studied at room temperature. This was done by investigating true stress-strain curves at constant strain rates, elastic recovery and stress relaxation properties and in-situ WAXS patterns during the deformation process. As for a series of semicrystalline polymers in previous studies, a strain-controlled deformation behaviour was found. The differential compliance, the recovery properties and the stress relaxation curves changed simultaneously at well-defined points. The strains at which these points occurred along the true stress-strain remained constant for the different samples despite their different percentage crystallinities. The well-defined way in which the different samples respond to external stresses complies with the granular substructure of the crystalline lamellae in a semicrystalline polymer.  相似文献   

15.
Polarization modulation infrared linear dichroism has been used to study the molecular orientation and relaxation of polystyrene/poly(2,6‐dimethyl 1,4‐phenylene oxide) (PS/PPO) miscible blends, containing up to 20% PPO, during and after a rapid uniaxial deformation above Tg. In general, it is found that both the PS and PPO chain orientation functions increase with stretching rate and PPO content, and decrease with temperature. For all blends investigated, between Tg + 5 and Tg + 13 °C, the relaxation occurs at the same rate for PS and PPO and, therefore, the relaxation times calculated are similar indicating, under those conditions, a strong relaxation coupling between the two polymers at both short and long times. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1405–1415, 2000  相似文献   

16.
The change in micromorphology of the polymer phase (single strut) of a flexible polyurethane foam during deformation has been investigated by attenuated total reflection infrared spectroscopy - linear dichroism and by atomic force microscopy. Deformation and, therefore, orientation take place mainly in the soft rubbery phase. This two-phase elastic deformation process has been translated into a mathematical model, which correctly predicts the shape of a single-strut stress-strain curve. The theory also predicts the ultimate shape of stress-strain curves of polyurethane elastomers at various hard phase contents and of low-density polyethylene at various temperatures. Deviations from the elastic behaviour could be ascribed to yielding in combination with the rubbery behaviour.  相似文献   

17.
The thermodynamic behavior of poly(bisphenol A carbonate) (PC) during uniaxial cold drawing and the properties of the drawn polymer were examined. Isothermal deformation calorimetric measurements were made during the drawing process. The deformation calorimeter measures heat, work, and internal energy changes for deformation. It was found that PC exhibited nonideal plasticity with approximately 50–80% of the work of deformation dissipated as heat. The remainder of the work of deformation was stored as a latent internal energy change. The value of the internal energy change was dependent on strain rate at 20°C but was not strongly dependent on temperature in the range 20–65°C. Thermomechanical measurements on cold-drawn PC samples demonstrated striking behavior at temperatures far below the glass transition temperature Tg. Stress-temperature experiments showed that the stress increased for uniaxially constrained samples, and this stress increase began at temperatures just above the deformation temperature. Additional experiments indicated that the changes which took place during cold drawing were physical in nature and were thermoreversible. These changes in physical properties are related to those which occur due to physical aging below Tg.  相似文献   

18.
Atactic polystyrene (aPS)/poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and isotactic polystyrene (iPS)/PPO compatible blends of varied composition were subjected to solid-state coextrusion. The efficiency of drawing, orientation, and crystallinity development were studied as a function of composition and draw ratio. The efficiency of drawing, as measured by elastic recovery, is high for coextrusion at temperatures ?40°C above the glass transition temperature of the particular blend. The maximum attainable draw ratio for the blends decreased with increasing PPO concentration; the highest blend draw ratio attained was 6.5 for 25 wt % PPO. The orientation on drawing, as measured by birefringence, increased with draw but decreased with increasing PPO component at the same draw ratio. When PPO was <50% in iPS/PPO blends, iPS crystallized on draw. The morphology of drawn blends was studied by electron microscopy and wide-angle x-ray scattering.  相似文献   

19.
橡胶材料因其独特的超弹性在实际中广泛应用,通过解析应力-应变关系可以为橡胶力学性能的工程应用提供理论指导.为了更准确地描述橡胶材料力学性能,提出一种适用于橡胶材料的超弹性混合本构模型.新模型基于Gaussian模型与八链模型,引入有关拉伸比的权重函数将二者耦合,在拉伸比较小的情况下,新模型退化成Gaussian形式,在...  相似文献   

20.
In this Perspective, I describe recent work on systems in which the traditional distinctions between (i) unentangled versus well‐entangled systems and (ii) melts versus glasses seem least useful, and argue for the broader use in glassy polymer mechanics of two more dichotomies: systems which possess (iii) unary versus binary and (iv) cooperative versus noncooperative relaxation dynamics. I discuss the applicability of (iii–iv) to understanding the functional form of strain hardening. Results from molecular dynamics simulations show that the “dramatic” hardening observed in densely entangled systems is associated with a crossover from unary, noncooperative to binary, cooperative relaxation as strain increases; chains stretch between entanglement points, altering the character of local plasticity. Promising approaches for future research along these lines are discussed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号