首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The NMR spin-spin relaxation (T2) spectra of high-density polyethylene (PE) has been investigated over a wide range of temperatures, both in the solid and molten states. Previous work in these laboratories has shown that the T2 relaxation spectrum of molten polyethylene differs from that of other polymers studied in that (a) it cannot be decomposed into two relaxation spectra (T2S and T2L) and (b) there is some evidence of a memory effect. This paper attempts to elucidate these observations, and compare them with the spin-spin relaxation of polyethylene at lower temperatures. In the solid state, the T2 decay comprises both a Gaussian distribution for the crystalline region, and an exponential decay for the amorphous component. The effects of crystallization conditions and of temperature were determined. In the molten state the T2 decay is more complex, but can be resolved into three exponentials. The longest (T2L) component arises as expected from the most mobile, low molecular weight fraction. The T2S component is due to an entangled but mobile network, as in other polymers. In addition, a short relaxation component T2X is observed, which is influenced by previous crystallinity and the processing history of the material, and is ascribed to some vestigial degree of structure in the molten phase.  相似文献   

2.
Decay reactions of the free radicals produced in irradiated polyethylene (high-density and low-density materials) were examined in connection with the molecular motion of the matrix polymer. Three temperature regions, in which the free radicals decay very rapidly, at around 120, 200, and 250°K, were designated TA, TL, and TB, respectively. The decay of the free radicals at these temperatures had activation energies in high-density polyethylene of 0.4 kcal/mole for TA, 9.4 kcal/mole for TL, and 18.4 kcal/mole for TB. In low-density polyethylene these quantities were 0.7 kcal/mole for TA, 23.1 kcal/mole for TL, and 24.8 kcal/mole for TB. Comparison of time constants for the decay reactions and for molecular motion of the matrix polymer indicate that the decay in TA and TB is closely related to molecular motion in the amorphous regions of the polymer. The decay of the free radicals at TL in high-density polyethylene is due to molecular motion associated with local mode relaxation at lamellar surfaces, while that of low-density polyethylene is due to local mode relaxation in the completely amorphous region. Steric configurations of the free radicals which decay in the respective temperature regions were also investigated.  相似文献   

3.
Nuclear magnetic resonance (NMR) spin–lattice relaxation times (T1) in various polyethylene and polypropylene resins were measured at 20 MHz and at temperatures of 130–490 K. At each temperature and for all resins, only a single value of T1 was found, which was consistent with the occurrence of rapid spin diffusion throughout the protons attached to the polymer chains. The data were analyzed for the estimation of activation energies corresponding to molecular motion causing spin–lattice relaxation. Two well‐defined minima were found for loge(T1) plotted as a function of temperature for all of the polypropylene resins. Single very broad minima were found for all of the polyethylene samples. In contrast, the free induction decay signals from all of the resins following single radio‐frequency pulses were observed to contain a rapidly decaying component followed by a much more slowly decaying signal. These components were used to estimate the amount of rigid component present in the solid resins at room temperature. Samples of one high‐density polyethylene and one low‐density polyethylene were irradiated with γ radiation up to a 500‐kGy dose to examine the effects of crosslinking on the NMR relaxation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 572–584, 2002; DOI 10.1002/polb.10116  相似文献   

4.
A general expression for the magnetization decay of a multipulse group is derived. This formula is applied to a three-component model of molecular motions in polymer melts. The influence of the several components on the magnetization decay is discussed. The relation of the effective nuclear magnetic relaxation time T2e to the Anderson-Weiss formula is also shown, and an analytical expression for the transverse relaxation in melts is derived. Finally T2e is compared with the relaxation time in the rotating frame T in the melt. The theoretical results for T2e are tested with measurements of frequency dependence in polyethylene melts.  相似文献   

5.
A theoretical treatment of the nonexponential relaxation behavior of the different proton nuclear magnetic resonance (NMR) relaxation processes in polymer melts is presented. Formulas are derived for a three-component model given by two versions and a homogeneous distribution of correlation times. The theoretical results were tested with measurements of T1, T2e, and T2 as functions of frequency and molecular mass in linear fractionated polyethylene samples. While the T1 relaxation always yields exponential magnetization decays, the T2e and T2 measurements show biexponential relaxation behavior. From the calculations it was found that the correlation time of the local motion is independent of the molecular mass, whereas the correlation time of the slowest motional process increases with M2.8w for the three-component model and with M2.2w for the distribution of correlation times, respectively. © 1992 John Wiley & Sons, Inc.  相似文献   

6.
The variation of nuclear magnetic resonance (NMR) relaxation parameters (T1, T2) within a polymer during swelling, limits the absolute accuracy with which liquid concentration profiles can be obtained using NMR imaging. In this article a study of the diffusion of decalin into ultra-high molecular weight polyethylene (UHMWPE) is reported. The study illustrates the use of a method of analysis whereby quantitative solvent profiles can be obtained from data influenced by both T1 and T2 contrast effects. A T1 and T2 map are obtained at a point in the uptake of liquid where the greatest range in liquid concentration is obtained at a point in the uptake of liquid where the greatest range in liquid concentration is observed. The intensity of signal corresponding to liquid in the polymer is compared to that of pure liquid in a reference sample, and correlations for T1 and T2 values versus signal intensity are used to deconvolve relaxation contrast, to yield the true liquid concentration. The technique was used to study the effect of degree of crosslinking of UHMWPE on the swelling kinetics and decalin transport within the polymer. A spin-echo imaging technique was used with a recycle delay approximately equal to the average spin-lattice relaxation time of the liquid, and an echo time approximately half the average spin-spin relaxation time. Under these conditions the relaxation contrast was significant, yet the mass uptake data derived from the concentration profiles obtained, using the method of analysis described, agreed well with gravimetric data. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
1H NMR spin–lattice and spin–spin relaxation of different types (cationic cetyltrimethyl ammonium bromide, anionic sodium dodecyl sulfonate and nonionic Triton X-100) of surfactants in water solution were studied. Simulation of the decay curves of proton relaxation shows that the spin lattice relaxation of all the samples exhibits exponentially, while the spin–spin relaxation for several protons on the hydrophobic chains forming the micellar core is bi-exponential. The fast relaxing component is attributed to the part of the segments of the hydrophobic chain, situated near or on the surface of the micellar core, while the slower relaxing component is attributed to the rest part staying in the interior. The latter exchanges with the former in equilibrium. Thus, a part of each certain segment of the hydrophobic chain has an opportunity to stay in the surface layer of the micellar core and spend some time on the interface experiencing hydrophilic environment. Generally, the protons on the methylene carbon of the hydrophobic chain nearest to the polar head have more chance to spend time in the hydrophilic environment. However, it seems to be dependent on the chemical structure of the surfactant molecule. Large size of the polar group of CTAB shows steric hindrance on the packing of the hydrophobic chain. Quantitative results are given. The fact, that the fraction of slow relaxing protons on the hydrophilic ethylene oxide long chain of Triton X-100 dominates over that of fast relaxing protons, and that their T 2 values are larger than those of the protons on the hydrocarbon chain in the interior of the micellar core, suggests that the ethylene oxide chain does not participate in the formation of the micellar core. Received: 10 March 1998 Accepted: 19 June 1998  相似文献   

8.
The variation of amorphous orientation and crystalline regularity of hard elastic polypropylene (HEPP) films during cyclic deformation and stress relaxation processes were studied using a FTIR spectrometer. The result proves entropic elasticity and shows the orientational hysteresis in the amorphous region or within the microfibrils, and also shows that the amorphous orientation increases, but that the crystalline regularity decreases with the increase of extension rate.Three spin-spin relaxation timesT 2f,T 2m, andT 2s and associated mass fractionsF f,F m, andF s of HEPP fibers were measured with a solid echo of NMR method at different elongations and after relaxation or recovery for a long time A new possible interpretation was proposed that, while the microfibrils are formed in HEPP, the medium decay component should be ascribed to inner molecules of the microfibrils, and the slow decay component to the surface molecules of the microfibrils. According to this interpretation, the results implied that subfibrillation is the main process when HEPP is stretched up to 15% strain, and that at above 15% strain thinning and lengthening of the microfibrils become the main process. Thickening of the microfibrils was found in the recovery and relaxation processes.  相似文献   

9.
Crystallizable runs of ethene in ethene-propene copolymers can be identified in 13C CPMAS NMR spectra as a resonance at 33 ppm. In the absence of spin diffusion, the variation in intensity of this resonance with a 1H spin lock will reflect the intrinsic TH. Spin diffusion leads to a more complex relaxation decay, which reflects the local polymer morphology. Simulations of the spin diffusion process have been carried out for a simplified two-phase model for the morphology with the aim of determining whether the lamellar thickness of the crystalline and amorphous regions can be found from the TH observed via the 13C NMR spectrum. Calculations covering the expected range of the input parameters, namely the spin diffusion coefficients, domain lengths, and intrinsic relaxation times, show that, providing the intrinsic relaxation time in the amorphous phase is known, an accurate estimate of the crystalline and amorphous lamellar thicknesses can be made. Analysis of simulated TH decays indicate that, in general, the time constant of the fastest decaying component can be identified with the intrinsic relaxation time of the amorphous phase. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
Measurements of T as a function of temperature have been made on two polyethylene oxides (PEO) with molecular masses of 5,000 and 30,000. The T measurements show biexponential behavior of the relaxation function in the temperature range from 170 K to 350 K. The intensities of the components of the relaxation function are constant over this temperature range in agreement with the crystallinities of the samples. The two relaxation times can be associated with the crystalline and amorphous component; the relaxation time minima describe the α relaxation in the crystalline regions of PEO and the glass transition in amorphous PEO.  相似文献   

11.
We synthesized three partially deuterated polymer samples, namely a poly(ethylene‐alt‐propylene) (EP) alternating copolymer, a poly(styrene‐b‐EP) diblock copolymer (SEP) and a poly(styrene‐b‐EP‐b‐styrene) triblock copolymer (SEPS). The 2H spin–lattice relaxation time, T1, of EP soft segments above their glass transition temperature was measured by solid‐state 2H NMR spectroscopy. It was found that the block copolymers had a fast and a slow T1 component whereas EP copolymer had only a fast component. The fast T1 components for SEP and SEPS are similar to the T1 value of EP above ca 20°C. The slow T1 component for SEP and SEPS exhibited a minimum at 60°C and approached the value of the fast component near the Tg of polystyrene. The motional behavior of the EP units for SEP is similar to that of SEPS over the entire range of temperature. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
The crystalline–noncrystalline structure and its structural changes from thermal treatments for ethylene ionomers have been investigated with solid‐state 13C and 23Na NMR spectroscopy. 13C spin–lattice relaxation time (T1C) measurements reveal that as‐received ethylene ionomers have much enhanced molecular mobility in the crystalline region in comparison with conventional polyethylene samples. By appropriate annealing, however, polyethylene‐like morphological features reflecting T1C behavior can also be observed. 13C spin–spin relaxation time (T2C) measurements for the noncrystalline region reveal the existence of two components with different T2C values, and these two components have been assigned to the crystalline–amorphous interfacial and rubbery–amorphous components. These results indicate that the structure of the major part of the noncrystalline region in the ethylene ionomers is similar to that of bulk‐crystallized polyethylene samples, regardless of possible ionic aggregates. The origin of the lower temperature endothermic peak in the heating process of the differential scanning calorimetry curve observed for the as‐received sample has also been examined somewhat in detail. As a result, it is proposed that the melting of smaller crystallites produced during storage at room temperature is the origin of the lower temperature peak. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1142–1153, 2002  相似文献   

13.
The times of longitudinal T 1 and transverse T 2 magnetic relaxation of protons of diethylene glycol in the bulk phase and in Vycor porous glasses with average pore radii of 4, 11, and 32 nm are measured by the pulse NMR method in the 172–350 K temperature range. It is found that, for all samples of porous glasses, the crystallization of diethylene glycol is not observed if its content corresponds to the monolayer surface filling. The minimum content of diethylene glycol, which makes it possible to cause its crystallization in porous glass, is determined. By analyzing the dependence of the characteristics of a component with T 2b = 20−40 μs in the transverse magnetization decay on the content of diethylene glycol in porous glasses, the volume of nanopores comparable in size with diethylene glycol molecule is estimated.  相似文献   

14.
Using nuclear magnetic resonance (NMR) T2 relaxation and pulsed-gradient spin-echo diffusion experiments at 175.5°C, molecular motions of the sole and gel of several epoxies of the type diglycidyl ether of bisphenol-A (DGEBA; Shell Epon 1007F and 1009F) cured with 4,4′-diaminodiphenyl sulfone (DDS) have been studies as a function of curative content. It was found that the fraction of protons associated with the shorter T2 component cannot be identified as the gel fraction until the substantial bimodal polymer polydispersity is accounted for in the spin relaxation model. The gel fraction and both relaxation rates have maxima near curing stoichiometry, and fall off more rapidly on the curative-poor side. The diffusion spectrum of the sol fraction was consistent with a light species (Epon 828 remnants) plus a polydisperse (M?w/M?n ?2) heavier species, in agreement with resin and sol gel permeation chromatography (GPC) results. Numerical simulations also show that polymer polydispersity is likely to affect the interpretation of T2 relaxation found in the literature.  相似文献   

15.
The uptake of water by nylon 6,6 [42DB Adipure (trade name of Dupont Canada Inc.)] at 100°C has been monitored by a combination of one-dimensional proton NMR spectroscopy, relaxation time (T1 and T2) measurements and proton microscopic NMR imaging techniques. The relaxation times of the water absorbed into the nylon matrix are very short at room temperature, (T2 < 1 ms and T1 ≈ 1 s) indicating that the water is located in a highly restricted environment and suggesting that strong interactions exist between the absorbed water and the polymer. The diffusion profiles measured at room temperature indicate that the diffusion of water into nylon 6,6 at 100°C is Case I Fickian diffusion. The spatial dependence of the T2 relaxation time constant and its variation with the water content was also examined. The results reveal that both T2 and T2* decrease toward the center of the sample in samples that have a concentration gradient of sorbed water. In fully saturated samples, no spatial dependence was observed. The overall values of T2 and T2* are also observed to increase as a function of exposure time. An evaluation of the desorption process at room temperature and at 100°C was performed. A continuous, exponentially decreasing solvent profile was observed for the desorption process which again indicates Case I Fickian kinetics. The exchange process of external bulk and atmospheric water with deuterium oxide (D2O) saturated nylon rods has also been studied using the microscopic imaging technique. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
Amorphous (1) and semicrystalline (2) samples of poly(ethylene naphthalene-2,6-dicarboxylate) (PEN) have been investigated by cross-polarization/magic angle spinning (CP/MAS) 13C NMR at 26°C (1 and 2), 100°C (1) and 120°C (2) in order to study the phase structure and the local motion of polymer chain segments at temperatures below and close to Tg (120°C). The lineshape of the ethylene unit 13C signal in sample 2 is consistent with the presence of two components which were assigned to trans and gauche conformations. The first component arises mainly from the crystalline regions and the second one from the amorphous part. Cross-polarization curves were traced by changing the contact time between carbon and proton reservoirs. TCH (cross relaxation time) and proton T1p (spin-lattice relaxation time in the rotating frame) values were obtained as best fit parameters by fitting calculated curves to the experimental data. All 13C NMR data are consistent with the presence of highly rigid ethylene units in both semicrystalline and amorphous samples within the temperature range (T) investigated. This result is in disagreement with the 1H NMR wide line spectra which showed a noticeable narrowing of the linewidth with increasing temperature in the same range, hence indicating a great mobility of the chain segments. To account for this discrepancy a qualitative model based on the existence of two distinct dynamic regions, one where motion is highly restricted and the other one where large reorientations of ethylene group torsional angles take place, is suggested. The NMR results led to the conclusion that three structural phases are present in PEN: crystalline, very rigid amorphous, and very mobile amorphous. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
The dynamic-structural changes and polymer - solvent interactions during the thermotropic phase transition in poly(vinyl methyl ether) (PVME)/D2O solutions in a broad range of polymer concentrations (c = 0.1-60 wt.-%) were studied combining the measurements of 1H NMR spectra, spin-spin (T2) and spin-lattice (T1) relaxation times. Phase separation in solutions results in a marked line broadening of a major part of polymer segments, evidently due to the formation of compact globular-like structures. The minority (∼15%) mobile component, which does not participate in the phase separation, consists of low-molecular-weight fractions of PVME, as shown by GPC. Measurements of spin-spin relaxation times T2 of PVME methylene protons have shown that globular structures are more compact in dilute solutions in comparison with semidilute solutions where globules probably contain a certain amount of water. A certain portion of water molecules bound at elevated temperatures to (in) PVME globular structures in semidilute and concentrated solutions was revealed from measurements of spin-spin and spin-lattice relaxation times of residual HDO molecules.  相似文献   

18.
The 13C spin-lattice relaxation times T1 of 13C-labeled polyethylene crystallized under different conditions were measured at temperatures from ?120 to 44°C by variable-temperature solid-state high-resolution 13C nuclear magnetic resonance (NMR) spectroscopy, in order to determine accurately the dynamics of the noncrystalline region of the polymer. From these results, it was found that the T1 minimum for the CH2 carbons in the noncrystalline region of solution-crystallized polyethylene with high crystallinity appears at higher temperature by about 20°C than that of melt-quenched polyethylene with low crystallinity. This means that the molecular motion of the CH2 carbons in the noncrystalline regions is more constrained at a given temperature in the material of higher crystallinity. Furthermore, dynamics of the noncrystalline region is discussed in terms of the 13C dipolar dephasing times.  相似文献   

19.
The mobilities of polymer chain segments in mixtures of rubber and carbon black were investigated by nuclear magnetic resonance. Spin–spin relaxation time (T2) measurements on cis-polybutadiene and ethylene–propylene–diene rubber (EPDM) bound rubbers detected at least two relaxing regions: an immobile region and a relatively free region. The molecular motions in the relatively free region are still constrained compared to those of the pure gum.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号